Displaying 21 – 40 of 44

Showing per page

Mathematical and numerical modelling of piezoelectric sensors

Sebastien Imperiale, Patrick Joly (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The present work aims at proposing a rigorous analysis of the mathematical and numerical modelling of ultrasonic piezoelectric sensors. This includes the well-posedness of the final model, the rigorous justification of the underlying approximation and the design and analysis of numerical methods. More precisely, we first justify mathematically the classical quasi-static approximation that reduces the electric unknowns to a scalar electric potential. We next justify the reduction of the computation...

Mathematical and numerical modelling of piezoelectric sensors

Sebastien Imperiale, Patrick Joly (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The present work aims at proposing a rigorous analysis of the mathematical and numerical modelling of ultrasonic piezoelectric sensors. This includes the well-posedness of the final model, the rigorous justification of the underlying approximation and the design and analysis of numerical methods. More precisely, we first justify mathematically the classical quasi-static approximation that reduces the electric unknowns to a scalar electric potential. We next justify the reduction of the computation...

Mathematical and numerical modelling of piezoelectric sensors

Sebastien Imperiale, Patrick Joly (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The present work aims at proposing a rigorous analysis of the mathematical and numerical modelling of ultrasonic piezoelectric sensors. This includes the well-posedness of the final model, the rigorous justification of the underlying approximation and the design and analysis of numerical methods. More precisely, we first justify mathematically the classical quasi-static approximation that reduces the electric unknowns to a scalar electric potential. We next justify the reduction of the computation...

Nonlinear boundary value problems with application to semiconductor device equations

Miroslav Pospíšek (1994)

Applications of Mathematics

The paper deals with boundary value problems for systems of nonlinear elliptic equations in a relatively general form. Theorems based on monotone operator theory and concerning the existence of weak solutions of such a system, as well as the convergence of discretized problem solutions are presented. As an example, the approach is applied to the stationary Van Roosbroeck’s system, arising in semiconductor device modelling. A convergent algorithm suitable for solving sets of algebraic equations generated...

PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages

Fredi Tröltzsch, Irwin Yousept (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with a PDE-constrained optimization problem of induction heating, where the state equations consist of 3D time-dependent heat equations coupled with 3D time-harmonic eddy current equations. The control parameters are given by finite real numbers representing applied alternating voltages which enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that, under certain constraints on the voltages and the temperature, a...

PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages

Fredi Tröltzsch, Irwin Yousept (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with a PDE-constrained optimization problem of induction heating, where the state equations consist of 3D time-dependent heat equations coupled with 3D time-harmonic eddy current equations. The control parameters are given by finite real numbers representing applied alternating voltages which enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that, under certain constraints on the voltages and the temperature, a...

Residual based a posteriori error estimators for eddy current computation

Rudi Beck, Ralf Hiptmair, Ronald H.W. Hoppe, Barbara Wohlmuth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider H(curl;Ω)-elliptic problems that have been discretized by means of Nédélec's edge elements on tetrahedral meshes. Such problems occur in the numerical computation of eddy currents. From the defect equation we derive localized expressions that can be used as a posteriori error estimators to control adaptive refinement. Under certain assumptions on material parameters and computational domains, we derive local lower bounds and a global upper bound for the total error measured in...

Currently displaying 21 – 40 of 44