Displaying 21 – 40 of 109

Showing per page

Conservative forms of Boltzmann's collision operator: Landau revisited

Cédric Villani (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We show that Boltzmann's collision operator can be written explicitly in divergence and double divergence forms. These conservative formulations may be of interest for both theoretical and numerical purposes. We give an application to the asymptotics of grazing collisions.

Entropic approximation in kinetic theory

Jacques Schneider (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Approximation theory in the context of probability density function turns out to go beyond the classical idea of orthogonal projection. Special tools have to be designed so as to respect the nonnegativity of the approximate function. We develop here and justify from the theoretical point of view an approximation procedure introduced by Levermore [Levermore, J. Stat. Phys. 83 (1996) 1021–1065] and based on an entropy minimization principle under moment constraints. We prove in particular a global...

Entropic approximation in kinetic theory

Jacques Schneider (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Approximation theory in the context of probability density function turns out to go beyond the classical idea of orthogonal projection. Special tools have to be designed so as to respect the nonnegativity of the approximate function. We develop here and justify from the theoretical point of view an approximation procedure introduced by Levermore [Levermore, J. Stat. Phys.83 (1996) 1021–1065] and based on an entropy minimization principle under moment constraints. We prove in particular...

Entropy maximisation problem for quantum relativistic particles

Miguel Escobedo, Stéphane Mischler, Manuel A. Valle (2005)

Bulletin de la Société Mathématique de France

The entropy of an ideal gas, both in the case of classical and quantum particles, is maximised when the number particle density, linear momentum and energy are fixed. The dispersion law energy to momentum is chosen as linear or quadratic, corresponding to non-relativistic or relativistic behaviour.

Fluid-dynamic equations for reacting gas mixtures

Marzia Bisi, Maria Groppi, Giampiero Spiga (2005)

Applications of Mathematics

Starting from the Grad 13-moment equations for a bimolecular chemical reaction, Navier-Stokes-type equations are derived by asymptotic procedure in the limit of small mean paths. Two physical situations of slow and fast reactions, with their different hydrodynamic variables and conservation equations, are considered separately, yielding different limiting results.

Formal passage from kinetic theory to incompressible Navier–Stokes equations for a mixture of gases

Marzia Bisi, Laurent Desvillettes (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present in this paper the formal passage from a kinetic model to the incompressible Navier−Stokes equations for a mixture of monoatomic gases with different masses. The starting point of this derivation is the collection of coupled Boltzmann equations for the mixture of gases. The diffusion coefficients for the concentrations of the species, as well as the ones appearing in the equations for velocity and temperature, are explicitly computed under the Maxwell molecule assumption in terms of the...

From a kinetic equation to a diffusion under an anomalous scaling

Giada Basile (2014)

Annales de l'I.H.P. Probabilités et statistiques

A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process ( K ( t ) , i ( t ) , Y ( t ) ) on ( 𝕋 2 × { 1 , 2 } × 2 ) , where 𝕋 2 is the two-dimensional torus. Here ( K ( t ) , i ( t ) ) is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. Y ( t ) is an additive functional of K , defined as 0 t v ( K ( s ) ) d s , where | v | 1 for small k . We prove that the rescaled process ( N ln N ) - 1 / 2 Y ( N t ) converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately...

Generalized kinetic equations and effective thermodynamics

Pierre-Henri Chavanis (2004)

Banach Center Publications

We introduce a new class of nonlocal kinetic equations and nonlocal Fokker-Planck equations associated with an effective generalized thermodynamical formalism. These equations have a rich physical and mathematical structure that can describe phase transitions and blow-up phenomena. On general grounds, our formalism can have applications in different domains of physics, astrophysics, hydrodynamics and biology. We find an aesthetic connexion between topics (stars, vortices, bacteries,...) which were...

Hydrodynamics of Inelastic Maxwell Models

V. Garzó, A. Santos (2011)

Mathematical Modelling of Natural Phenomena

An overview of recent results pertaining to the hydrodynamic description (both Newtonian and non-Newtonian) of granular gases described by the Boltzmann equation for inelastic Maxwell models is presented. The use of this mathematical model allows us to get exact results for different problems. First, the Navier–Stokes constitutive equations with explicit expressions for the corresponding transport coefficients are derived by applying the Chapman–Enskog...

Currently displaying 21 – 40 of 109