Displaying 21 – 40 of 133

Showing per page

An Intracellular Delay-Differential Equation Model of the HIV Infection and Immune Control

T. Dumrongpokaphan, Y. Lenbury, R. Ouncharoen, Y. Xu (2010)

Mathematical Modelling of Natural Phenomena

Previous work has shown that intracellular delay needs to be taken into account to accurately determine the half-life of free virus from drug perturbation experiments [1]. The delay also effects the estimated value for the infected T-cell loss rate when we assume that the drug is not completely effective [19]. Models of virus infection that include intracellular delay are more accurate representations of the biological data.
We analyze a non-linear model of the human immunodeficiency virus (HIV)...

An unconditionally positive and global stability preserving NSFD scheme for an epidemic model with vaccination

Deqiong Ding, Qiang Ma, Xiaohua Ding (2014)

International Journal of Applied Mathematics and Computer Science

In this paper, a NonStandard Finite Difference (NSFD) scheme is constructed, which can be used to determine numerical solutions for an epidemic model with vaccination. Here the NSFD method is employed to derive a set of difference equations for the epidemic model with vaccination. We show that difference equations have the same dynamics as the original differential system, such as the positivity of the solutions and the stability of the equilibria, without being restricted by the time step. Our...

An unconditionally stable nonstandard finite difference method applied to a mathematical model of HIV infection

Hasim A. Obaid, Rachid Ouifki, Kailash C. Patidar (2013)

International Journal of Applied Mathematics and Computer Science

We formulate and analyze an unconditionally stable nonstandard finite difference method for a mathematical model of HIV transmission dynamics. The dynamics of this model are studied using the qualitative theory of dynamical systems. These qualitative features of the continuous model are preserved by the numerical method that we propose in this paper. This method also preserves the positivity of the solution, which is one of the essential requirements when modeling epidemic diseases. Robust numerical...

Analysis of a Model with Multiple Infectious Stages and Arbitrarily Distributed Stage Durations

Y. Yang, D. Xu, Z. Feng (2008)

Mathematical Modelling of Natural Phenomena

Infectious diseases may have multiple infectious stages with very different epidemiological attributes, including infectivity and disease progression. These stages are often assumed to have exponentially distributed durations in epidemiological models. However, models that use the exponential distribution assumption (EDA) may generate biased and even misleading results in some cases. This discrepancy is particularly damaging if the models are employed to assist policy-makers in disease control...

Analysis of a Nonautonomous HIV/AIDS Model

G. P. Samanta (2010)

Mathematical Modelling of Natural Phenomena

In this paper we have considered a nonlinear and nonautonomous stage-structured HIV/AIDS epidemic model with an imperfect HIV vaccine, varying total population size and distributed time delay to become infectious due to intracellular delay between initial infection of a cell by HIV and the release of new virions. Here, we have established some sufficient conditions on the permanence and extinction of the disease by using inequality analytical technique....

Analysis of The Impact of Diabetes on The Dynamical Transmission of Tuberculosis

D.P. Moualeu, S. Bowong, J.J. Tewa, Y. Emvudu (2012)

Mathematical Modelling of Natural Phenomena

Tuberculosis (TB) remains a major global health problem. A possible risk factor for TB is diabetes (DM), which is predicted to increase dramatically over the next two decades, particularly in low and middle income countries, where TB is widespread. This study aimed to assess the strength of the association between TB and DM. We present a deterministic model for TB in a community in order to determine the impact of DM in the spread of the disease....

Asymptotic Behavior in a Salmonella Infection Model

K. Prévost, C. Beaumont, P. Magal (2010)

Mathematical Modelling of Natural Phenomena

Salmonella is one of the major sources of toxi-infection in humans in France and United States. The incidence of human salmonellosis has considerably increased over the past 20 years and this can be largely attributed to epidemics of S. enteritidis phage type 4 in poultry in numerous countries. In this article, we formulate and analyse a model in which the transmission of the disease is determined by contact between hens and Salmonella in the environment.

Bacteriophage Infection Dynamics: Multiple Host Binding Sites

H. L. Smith, R. T. Trevino (2009)

Mathematical Modelling of Natural Phenomena

We construct a stochastic model of bacteriophage parasitism of a host bacteria that accounts for demographic stochasticity of host and parasite and allows for multiple bacteriophage adsorption to host. We analyze the associated deterministic model, identifying the basic reproductive number for phage proliferation, showing that host and phage persist when it exceeds unity, and establishing that the distribution of adsorbed phage on a host is binomial with slowly evolving mean. Not surprisingly,...

Bifurcation Thresholds in an SIR Model with Information-Dependent Vaccination

A. d'Onofrio, P. Manfredi, P. Manfredi (2010)

Mathematical Modelling of Natural Phenomena

Simple epidemiological models with information dependent vaccination functions can generate sustained oscillations via Hopf bifurcation of the endemic state. The onset of these oscillations depend on the shape of the vaccination function. A “global” approach is used to characterize the instability condition and identify classes of functions that always lead to stability/instability. The analysis allows the identification of an analytically determined “threshold vaccination function” having...

Building Mathematical Models and Biological Insight in an Introductory Biology Course

A. E. Weisstein (2011)

Mathematical Modelling of Natural Phenomena

A growing body of literature testifies to the importance of quantitative reasoning skills in the 21st-century biology curriculum, and to the learning benefits associated with active pedagogies. The process of modeling a biological system provides an approach that integrates mathematical skills and higher-order thinking with existing course content knowledge. We describe a general strategy for teaching model-building in an introductory biology course,...

Coupling a branching process to an infinite dimensional epidemic process***

Andrew D. Barbour (2010)

ESAIM: Probability and Statistics

Branching process approximation to the initial stages of an epidemic process has been used since the 1950's as a technique for providing stochastic counterparts to deterministic epidemic threshold theorems. One way of describing the approximation is to construct both branching and epidemic processes on the same probability space, in such a way that their paths coincide for as long as possible. In this paper, it is shown, in the context of a Markovian model of parasitic infection, that coincidence...

Currently displaying 21 – 40 of 133