Displaying 641 – 660 of 791

Showing per page

Relationship between the selection pressure and the rate of mutation accumulation

Katarzyna Bońkowska, Przemysław Biecek, Agnieszka Łaszkiewicz, Stanisław Cebrat (2008)

Banach Center Publications

We use the diploid, sexual Penna ageing model and its modification with noise and environment fluctuations to analyse the influence of random death on the accumulation of defective genes in the genetic pool of populations evolving under different environmental conditions.

Reliable numerical modelling of malaria propagation

István Faragó, Miklós Emil Mincsovics, Rahele Mosleh (2018)

Applications of Mathematics

We investigate biological processes, particularly the propagation of malaria. Both the continuous and the numerical models on some fixed mesh should preserve the basic qualitative properties of the original phenomenon. Our main goal is to give the conditions for the discrete (numerical) models of the malaria phenomena under which they possess some given qualitative property, namely, to be between zero and one. The conditions which guarantee this requirement are related to the time-discretization...

Repeat distributions from unequal crossovers

Michael Baake (2008)

Banach Center Publications

It is a well-known fact that genetic sequences may contain sections with repeated units, called repeats, that differ in length over a population, with a length distribution of geometric type. A simple class of recombination models with single crossovers is analysed that result in equilibrium distributions of this type. Due to the nonlinear and infinite-dimensional nature of these models, their analysis requires some nontrivial tools from measure theory and functional analysis, which makes them interesting...

Rings of constants of generic 4D Lotka-Volterra systems

Janusz Zieliński, Piotr Ossowski (2013)

Czechoslovak Mathematical Journal

We show that the rings of constants of generic four-variable Lotka-Volterra derivations are finitely generated polynomial rings. We explicitly determine these rings, and we give a description of all polynomial first integrals of their corresponding systems of differential equations. Besides, we characterize cofactors of Darboux polynomials of arbitrary four-variable Lotka-Volterra systems. These cofactors are linear forms with coefficients in the set of nonnegative integers. Lotka-Volterra systems...

Robust Feedback Control Design for a Nonlinear Wastewater Treatment Model

M. Serhani, N. Raissi, P. Cartigny (2009)

Mathematical Modelling of Natural Phenomena

In this work we deal with the design of the robust feedback control of wastewater treatment system, namely the activated sludge process. This problem is formulated by a nonlinear ordinary differential system. On one hand, we develop a robust analysis when the specific growth function of the bacterium μ is not well known. On the other hand, when also the substrate concentration in the feed stream sin is unknown, we provide an observer of system and propose a design of robust feedback control in...

Sampling properties of estimators of nucleotide diversity at discovered SNP sites

Alexander Renwick, Penelope Bonnen, Dimitra Trikka, David Nelson, Ranajit Chakraborty, Marek Kimmel (2003)

International Journal of Applied Mathematics and Computer Science

SNP sites are generally discovered by sequencing regions of the human genome in a limited number of individuals. This may leave SNP sites present in the region, but containing rare mutant nucleotides, undetected. Consequently, estimates of nucleotide diversity obtained from assays of detected SNP sites are biased. In this research we present a statistical model of the SNP discovery process, which is used to evaluate the extent of this bias. This model involves the symmetric Beta distribution of...

Scaling of Stochasticity in Dengue Hemorrhagic Fever Epidemics

M. Aguiar, B.W. Kooi, J. Martins, N. Stollenwerk (2012)

Mathematical Modelling of Natural Phenomena

In this paper we analyze the stochastic version of a minimalistic multi-strain model, which captures essential differences between primary and secondary infections in dengue fever epidemiology, and investigate the interplay between stochasticity, seasonality and import. The introduction of stochasticity is needed to explain the fluctuations observed in some of the available data sets, revealing a scenario where noise and complex deterministic skeleton...

Seasonal Forcing Drives Spatio-Temporal Pattern Formation in Rabies Epidemics

N. V. Festenberg, T. Gross, B. Blasius (2010)

Mathematical Modelling of Natural Phenomena

Seasonal forcing is identified as a key pattern generating mechanism in an epidemic model of rabies dispersal. We reduce an established individual-based high-detail model down to a deterministic conceptual model. The characteristic wave pattern characterized by high densities of infected individuals is maintained throughout the reduction process. In our model it is evident that seasonal forcing is the dominant factor that drives pattern formation. In particular we show that seasonal forcing can...

Seasonality, Climate Cycles and Body Size Evolution

T. A. Troost, J. A. van Dam, B. W. Kooi, E. Tuenter (2009)

Mathematical Modelling of Natural Phenomena

The seasonality hypothesis states that climates characterized by large annual cycles select for large body sizes. In order to study the effects of seasonality on the evolution of body size, we use a model that is based on physiological rules and first principles. At the ecological time scale, our model results show that both larger productivity and seasonality may lead to larger body sizes. Our model is the first dynamic and process-based model to support the seasonality hypothesis and hence...

Selection Theorem for Systems with Inheritance

A. N. Gorban (2010)

Mathematical Modelling of Natural Phenomena

The problem of finite-dimensional asymptotics of infinite-dimensional dynamic systems is studied. A non-linear kinetic system with conservation of supports for distributions has generically finite-dimensional asymptotics. Such systems are apparent in many areas of biology, physics (the theory of parametric wave interaction), chemistry and economics. This conservation of support has a biological interpretation: inheritance. The finite-dimensional asymptotics demonstrates effects of “natural”...

Self-replication processes in nanosystems of informatics

Stefan Węgrzyn, Ryszard Winiarczyk, Lech Znamirowski (2003)

International Journal of Applied Mathematics and Computer Science

Recent research on the nanotechnological processes of molecular products and object synthesis as well as research on the nanosystems of informatics, stimulates the development of technical systems of informatics. Until now, they have been used mainly for computational tasks when, similarly to biological organisms, they allowed the development of self-replicating products and complete objects. One can focus here on the model of a circulation of materials, information and energy in a biological cell,...

Semigroup Analysis of Structured Parasite Populations

J. Z. Farkas, D. M. Green, P. Hinow (2010)

Mathematical Modelling of Natural Phenomena

Motivated by structured parasite populations in aquaculture we consider a class of size-structured population models, where individuals may be recruited into the population with distributed states at birth. The mathematical model which describes the evolution of such a population is a first-order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral...

Semilinear perturbations of Hille-Yosida operators

Horst R. Thieme, Hauke Vosseler (2003)

Banach Center Publications

The semilinear Cauchy problem (1) u’(t) = Au(t) + G(u(t)), u ( 0 ) = x D ( A ) ¯ , with a Hille-Yosida operator A and a nonlinear operator G: D(A) → X is considered under the assumption that ||G(x) - G(y)|| ≤ ||B(x -y )|| ∀x,y ∈ D(A) with some linear B: D(A) → X, B ( λ - A ) - 1 x = λ 0 e - λ t V ( s ) x d s , where V is of suitable small strong variation on some interval [0,ε). We will prove the existence of a semiflow on [ 0 , ) × D ( A ) ¯ that provides Friedrichs solutions in L₁ for (1). If X is a Banach lattice, we replace the condition above by |G(x) - G(y)| ≤ Bv whenever...

Sensitivity studies of pollutant concentrations calculated by the UNI-DEM with respect to the input emissions

Ivan Dimov, Raya Georgieva, Tzvetan Ostromsky, Zahari Zlatev (2013)

Open Mathematics

The influence of emission levels on the concentrations of four important air pollutants (ammonia, ozone, ammonium sulphate and ammonium nitrate) over three European cities (Milan, Manchester, and Edinburgh) with different geographical locations is considered. Sensitivity analysis of the output of the Unified Danish Eulerian Model according to emission levels is provided. The Sobol’ variance-based approach for global sensitivity analysis has been applied to compute the corresponding sensitivity measures....

Currently displaying 641 – 660 of 791