Displaying 21 – 40 of 79

Showing per page

Equivalence of control systems with linear systems on Lie groups and homogeneous spaces

Philippe Jouan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this paper is to prove that a control affine system on a manifold is equivalent by diffeomorphism to a linear system on a Lie group or a homogeneous space if and only if the vector fields of the system are complete and generate a finite dimensional Lie algebra. A vector field on a connected Lie group is linear if its flow is a one parameter group of automorphisms. An affine vector field is obtained by adding a left invariant one. Its projection on a homogeneous space, whenever it exists,...

Exact controllability of linear dynamical systems: A geometrical approach

María Isabel García-Planas (2017)

Applications of Mathematics

In recent years there has been growing interest in the descriptive analysis of complex systems, permeating many aspects of daily life, obtaining considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Concretely, for complex systems it is of interest to study the exact controllability; this measure is defined as the minimum set of controls that are needed...

External properness

Moisés Bonilla, Michel Malabre, Jaime Pacheco (2008)

Kybernetika

In this paper, we revisit the structural concept of properness. We distinguish between the properness of the whole system, here called internal properness, and the properness of the “observable part” of the system. We give geometric characterizations for this last properness concept, namely external properness.

Fixed poles of H 2 optimal control by measurement feedback

Jean-François Camart, Basilio del-Muro-Cuéllar, Michel Malabre (2002)

Kybernetika

This paper is concerned with the flexibility in the closed loop pole location when solving the H 2 optimal control problem (also called the H 2 optimal disturbance attenuation problem) by proper measurement feedback. It is shown that there exists a precise and unique set of poles which is present in the closed loop system obtained by any measurement feedback solution of the H 2 optimal control problem. These “ H 2 optimal fixed poles” are characterized in geometric as well as structural terms. A procedure...

Flat outputs of two-input driftless control systems

Shun-Jie Li, Witold Respondek (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study the problem of flatness of two-input driftless control systems. Although a characterization of flat systems of that class is known, the problems of describing all flat outputs and of calculating them is open and we solve it in the paper. We show that all x-flat outputs are parameterized by an arbitrary function of three canonically defined variables. We also construct a system of 1st order PDE’s whose solutions give all x-flat outputs of two-input driftless systems. We illustrate our results...

Flat outputs of two-input driftless control systems

Shun-Jie Li, Witold Respondek (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study the problem of flatness of two-input driftless control systems. Although a characterization of flat systems of that class is known, the problems of describing all flat outputs and of calculating them is open and we solve it in the paper. We show that all x-flat outputs are parameterized by an arbitrary function of three canonically defined variables. We also construct a system of 1st order PDE’s whose solutions give all x-flat outputs of...

Flat outputs of two-input driftless control systems

Shun-Jie Li, Witold Respondek (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study the problem of flatness of two-input driftless control systems. Although a characterization of flat systems of that class is known, the problems of describing all flat outputs and of calculating them is open and we solve it in the paper. We show that all x-flat outputs are parameterized by an arbitrary function of three canonically defined variables. We also construct a system of 1st order PDE’s whose solutions give all x-flat outputs of...

Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states

David Avanessoff, Jean-Baptiste Pomet (2007)

ESAIM: Control, Optimisation and Calculus of Variations

This paper studies Monge parameterization, or differential flatness, of control-affine systems with four states and two controls. Some of them are known to be flat, and this implies admitting a Monge parameterization. Focusing on systems outside this class, we describe the only possible structure of such a parameterization for these systems, and give a lower bound on the order of this parameterization, if it exists. This lower-bound is good enough to recover the known results about “(x,u)-flatness”...

Geometric structures of stable output feedback systems

Zhenning Zhang, Huafei Sun, Fengwei Zhong (2009)

Kybernetika

In this paper, we investigate the geometric structures of the stable time-varying and the stable static output feedback systems. Firstly, we give a parametrization of stabilizing time-varying output feedback gains subject to certain constraints, that is, the subset of stabilizing time-varying output feedback gains is diffeomorphic to the Cartesian product of the set of time-varying positive definite matrices and the set of time-varying skew symmetric matrices satisfying certain algebraic conditions....

H 2 -optimal rejection with preview: geometric constraints and dynamic feedforward solutions via spectral factorization

Elena Zattoni (2008)

Kybernetika

In this work, a feedforward dynamic controller is devised in order to achieve H2-optimal rejection of signals known with finite preview, in discrete-time systems. The feedforward approach requires plant stability and, more generally, robustness with respect to parameter uncertainties. On standard assumptions, those properties can be guaranteed by output dynamic feedback, while dynamic feedforward is specifically aimed at taking advantage of the available preview of the signals to be rejected, in...

Homogeneous approximations and local observer design

Tomas Ménard, Emmanuel Moulay, Wilfrid Perruquetti (2013)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with the construction of local observers for nonlinear systems without inputs, satisfying an observability rank condition. The aim of this study is, first, to define an homogeneous approximation that keeps the observability property unchanged at the origin. This approximation is further used in the synthesis of a local observer which is proven to be locally convergent for Lyapunov-stable systems. We compare the performance of the homogeneous approximation observer with the...

Idempotent versions of Haar’s Lemma: links between comparison of discrete event systems with different state spaces and control

Mourad Ahmane, Laurent Truffet (2007)

Kybernetika

Haar's Lemma (1918) deals with the algebraic characterization of the inclusion of polyhedral sets. This Lemma has been involved many times in automatic control of linear dynamical systems via positive invariance of polyhedrons. More recently, it has been used to characterize stochastic comparison w.r.t. linear/integral ordering of Markov (reward) chains. In this paper we develop a state space oriented approach to the control of Discrete Event Systems (DES) based on the remark that most of control...

Input reconstruction by means of system inversion: A geometric approach to fault detection and isolation in nonlinear systems

András Edelmayer, József Bokor, Zoltán Szabó, Ferenc Szigeti (2004)

International Journal of Applied Mathematics and Computer Science

In this paper the classical detection filter design problem is considered as an input reconstruction problem. Input reconstruction is viewed as a dynamic inversion problem. This approach is based on the existence of the left inverse and arrives at detector architectures whose outputs are the fault signals while the inputs are the measured system inputs and outputs and possibly their time derivatives. The paper gives a brief summary of the properties and existence of the inverse for linear and nonlinear...

Currently displaying 21 – 40 of 79