Une caractérisation des rétractes absolus de voisinage

Robert Cauty

Fundamenta Mathematicae (1994)

  • Volume: 144, Issue: 1, page 11-22
  • ISSN: 0016-2736

Abstract

top
We prove that a metric space is an ANR if, and only if, every open subset of X has the homotopy type of a CW-complex.

How to cite

top

Cauty, Robert. "Une caractérisation des rétractes absolus de voisinage." Fundamenta Mathematicae 144.1 (1994): 11-22. <http://eudml.org/doc/212011>.

@article{Cauty1994,
abstract = {We prove that a metric space is an ANR if, and only if, every open subset of X has the homotopy type of a CW-complex.},
author = {Cauty, Robert},
journal = {Fundamenta Mathematicae},
keywords = {homotopy type; CW-complex},
language = {fre},
number = {1},
pages = {11-22},
title = {Une caractérisation des rétractes absolus de voisinage},
url = {http://eudml.org/doc/212011},
volume = {144},
year = {1994},
}

TY - JOUR
AU - Cauty, Robert
TI - Une caractérisation des rétractes absolus de voisinage
JO - Fundamenta Mathematicae
PY - 1994
VL - 144
IS - 1
SP - 11
EP - 22
AB - We prove that a metric space is an ANR if, and only if, every open subset of X has the homotopy type of a CW-complex.
LA - fre
KW - homotopy type; CW-complex
UR - http://eudml.org/doc/212011
ER -

References

top
  1. [1] C. J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16. Zbl0175.19802
  2. [2] R. Cauty, Convexité topologique et prolongement des fonctions continues, Compositio Math. 27 (1973), 233-271. Zbl0275.54015
  3. [3] T. tom Dieck, K. H. Kamps und D. Puppe, Homotopietheorie, Lecture Notes in Math. 157, Springer, Berlin, 1970. 
  4. [4] C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), 200-242. Zbl0037.10101
  5. [5] R. Engelking, General Topology, PWN, Warszawa, 1977. 
  6. [6] R. Geoghegan, Conjecture 6, in: Proc. Internat. Conf. on Geometric Topology, Warszawa, 1978, Presented Problems, PWN, Warszawa, 1980, p. 463. 
  7. [7] R. Geoghegan, Open problems in infinite-dimensional topology, Topology Proc. 4 (1979), 287-338. Zbl0448.57001
  8. [8] J. B. Giever, On the equivalence of two singular homology theories, Ann. of Math. 51 (1950), 178-191. Zbl0035.38801
  9. [9] S. T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965. Zbl0145.43003
  10. [10] G. Kozlowski, Images of ANR's, manuscrit non publié. 
  11. [11] A. R. Pears, Dimension Theory of General Spaces, Cambridge University Press, Cambridge, 1975. 
  12. [12] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966. 
  13. [13] A. Strøm, Note on cofibrations II, Math. Scand. 22 (1968), 130-142. Zbl0181.26504
  14. [14] J. E. West, Open problems in infinite dimensional topology, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), Elsevier, 1990, 524-597. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.