Un espace métrique linéaire qui n'est pas un rétracte absolu

Robert Cauty

Fundamenta Mathematicae (1994)

  • Volume: 146, Issue: 1, page 85-99
  • ISSN: 0016-2736

Abstract

top
We construct the example of the title.

How to cite

top

Cauty, Robert. "Un espace métrique linéaire qui n'est pas un rétracte absolu." Fundamenta Mathematicae 146.1 (1994): 85-99. <http://eudml.org/doc/212053>.

@article{Cauty1994,
abstract = {We construct the example of the title.},
author = {Cauty, Robert},
journal = {Fundamenta Mathematicae},
keywords = {topological vector space; absolute retract},
language = {fre},
number = {1},
pages = {85-99},
title = {Un espace métrique linéaire qui n'est pas un rétracte absolu},
url = {http://eudml.org/doc/212053},
volume = {146},
year = {1994},
}

TY - JOUR
AU - Cauty, Robert
TI - Un espace métrique linéaire qui n'est pas un rétracte absolu
JO - Fundamenta Mathematicae
PY - 1994
VL - 146
IS - 1
SP - 85
EP - 99
AB - We construct the example of the title.
LA - fre
KW - topological vector space; absolute retract
UR - http://eudml.org/doc/212053
ER -

References

top
  1. [1] V. N. Basmanov, Foncteurs covariants, rétractes et dimension, Dokl. Akad. Nauk SSSR 271 (1983), 1033-1036 (en russe). 
  2. [2] J. van der Bijl and J. van Mill, Linear spaces, absolute retracts, and the compact extension property, Proc. Amer. Math. Soc. 104 (1988), 942-952. Zbl0689.55001
  3. [3] R. Cauty, Une caractérisation des rétractes absolus de voisinage, Fund. Math. 144 (1994), 11-22. 
  4. [4] T. Dobrowolski, On extending mappings into nonlocally convex linear metric spaces, Proc. Amer. Math. Soc. 93 (1985), 555-560. Zbl0561.54011
  5. [5] A. N. Dranishnikov, Sur un problème de P. S. Aleksandrov, Mat. Sb. 135 (177) (1988), 551-557 (en russe). 
  6. [6] R. Engelking, General Topology, PWN, Warszawa, 1977. 
  7. [7] R. Engelking, Dimension Theory, PWN, Warszawa, 1978. 
  8. [8] W. E. Haver, Locally contractible spaces that are absolute neighborhood retracts, Proc. Amer. Math. Soc. 40 (1973), 280-284. Zbl0263.54008
  9. [9] W. E. Haver, A near-selection theorem, General Topology Appl. 9 (1978), 117-124. Zbl0396.54008
  10. [10] J. L. Kelley and I. Namioka, Linear Topological Spaces, van Nostrand, New York, 1963. Zbl0318.46001
  11. [11] V. Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286-296. Zbl0096.08001
  12. [12] G. Kozlowski, Factorization of certain maps up to homotopy, Proc. Amer. Math. Soc. 21 (1969), 88-92. Zbl0184.26702
  13. [13] J. J. Walsh, Isotoping mappings to open mappings, Trans. Amer. Math. Soc. 250 (1979), 121-145. Zbl0414.54007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.