Un espace métrique linéaire qui n'est pas un rétracte absolu

Robert Cauty

Fundamenta Mathematicae (1994)

  • Volume: 146, Issue: 1, page 85-99
  • ISSN: 0016-2736

Abstract

top
We construct the example of the title.

How to cite

top

Cauty, Robert. "Un espace métrique linéaire qui n'est pas un rétracte absolu." Fundamenta Mathematicae 146.1 (1994): 85-99. <http://eudml.org/doc/212053>.

@article{Cauty1994,
abstract = {We construct the example of the title.},
author = {Cauty, Robert},
journal = {Fundamenta Mathematicae},
keywords = {topological vector space; absolute retract},
language = {fre},
number = {1},
pages = {85-99},
title = {Un espace métrique linéaire qui n'est pas un rétracte absolu},
url = {http://eudml.org/doc/212053},
volume = {146},
year = {1994},
}

TY - JOUR
AU - Cauty, Robert
TI - Un espace métrique linéaire qui n'est pas un rétracte absolu
JO - Fundamenta Mathematicae
PY - 1994
VL - 146
IS - 1
SP - 85
EP - 99
AB - We construct the example of the title.
LA - fre
KW - topological vector space; absolute retract
UR - http://eudml.org/doc/212053
ER -

References

top
  1. [1] V. N. Basmanov, Foncteurs covariants, rétractes et dimension, Dokl. Akad. Nauk SSSR 271 (1983), 1033-1036 (en russe). 
  2. [2] J. van der Bijl and J. van Mill, Linear spaces, absolute retracts, and the compact extension property, Proc. Amer. Math. Soc. 104 (1988), 942-952. Zbl0689.55001
  3. [3] R. Cauty, Une caractérisation des rétractes absolus de voisinage, Fund. Math. 144 (1994), 11-22. 
  4. [4] T. Dobrowolski, On extending mappings into nonlocally convex linear metric spaces, Proc. Amer. Math. Soc. 93 (1985), 555-560. Zbl0561.54011
  5. [5] A. N. Dranishnikov, Sur un problème de P. S. Aleksandrov, Mat. Sb. 135 (177) (1988), 551-557 (en russe). 
  6. [6] R. Engelking, General Topology, PWN, Warszawa, 1977. 
  7. [7] R. Engelking, Dimension Theory, PWN, Warszawa, 1978. 
  8. [8] W. E. Haver, Locally contractible spaces that are absolute neighborhood retracts, Proc. Amer. Math. Soc. 40 (1973), 280-284. Zbl0263.54008
  9. [9] W. E. Haver, A near-selection theorem, General Topology Appl. 9 (1978), 117-124. Zbl0396.54008
  10. [10] J. L. Kelley and I. Namioka, Linear Topological Spaces, van Nostrand, New York, 1963. Zbl0318.46001
  11. [11] V. Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286-296. Zbl0096.08001
  12. [12] G. Kozlowski, Factorization of certain maps up to homotopy, Proc. Amer. Math. Soc. 21 (1969), 88-92. Zbl0184.26702
  13. [13] J. J. Walsh, Isotoping mappings to open mappings, Trans. Amer. Math. Soc. 250 (1979), 121-145. Zbl0414.54007

NotesEmbed ?

top

You must be logged in to post comments.