Displaying similar documents to “Finite volume methods for elliptic PDE’s : a new approach”

A posteriori error estimates for the 3 D stabilized Mortar finite element method applied to the Laplace equation

Zakaria Belhachmi (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider a non-conforming stabilized domain decomposition technique for the discretization of the three-dimensional Laplace equation. The aim is to extend the numerical analysis of residual error indicators to this model problem. Two formulations of the problem are considered and the error estimators are studied for both. In the first one, the error estimator provides upper and lower bounds for the energy norm of the mortar finite element solution whereas in the second case, it also...

Finite-element discretizations of a two-dimensional grade-two fluid model

Vivette Girault, Larkin Ridgway Scott (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the...

Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows

Marco Picasso, Jacques Rappaz (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, a nonlinear problem corresponding to a simplified Oldroyd-B model without convective terms is considered. Assuming the domain to be a convex polygon, existence of a solution is proved for small relaxation times. Continuous piecewise linear finite elements together with a Galerkin Least Square (GLS) method are studied for solving this problem. Existence and a priori error estimates are established using a Newton-chord fixed point theorem, a posteriori error estimates are...

Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints

Eduardo Casas (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the L norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint...

New mixed finite volume methods for second order eliptic problems

Kwang Y. Kim (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper we introduce and analyze new mixed finite volume methods for second order elliptic problems which are based on (div)- approximations for the vector variable and approximations for the scalar variable. The discretization is fulfilled by combining the ideas of the traditional finite volume box method and the local discontinuous Galerkin method. We propose two different types of methods, called Methods I and II, and show that they have distinct advantages over the mixed...

A second-order finite volume element method on quadrilateral meshes for elliptic equations

Min Yang (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, by use of affine biquadratic elements, we construct and analyze a finite volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be of second-order in H 1 -norm, provided that each quadrilateral in partition is almost a parallelogram. Numerical experiments are presented to confirm the usefulness and efficiency of the method.

Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations

Tie Zhu Zhang, Shu Hua Zhang (2015)

Applications of Mathematics

Similarity:

We consider the original DG method for solving the advection-reaction equations with arbitrary velocity in d space dimensions. For triangulations satisfying the flow condition, we first prove that the optimal convergence rate is of order k + 1 in the L 2 -norm if the method uses polynomials of order k . Then, a very simple derivative recovery formula is given to produce an approximation to the derivative in the flow direction which superconverges with order k + 1 . Further we consider a residual-based...

The Mortar finite element method for Bingham fluids

Patrick Hild (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper deals with the flow problem of a viscous plastic fluid in a cylindrical pipe. In order to approximate this problem governed by a variational inequality, we apply the nonconforming mortar finite element method. By using appropriate techniques, we are able to prove the convergence of the method and to obtain the same convergence rate as in the conforming case.