Page 1 Next

Displaying 1 – 20 of 37

Showing per page

On fundamental solutions of binary quadratic form equations

Keith R. Matthews, John P. Robertson, Anitha Srinivasan (2015)

Acta Arithmetica

We show that, with suitable modification, the upper bound estimates of Stolt for the fundamental integer solutions of the Diophantine equation Au²+Buv+Cv²=N, where A>0, N≠0 and B²-4AC is positive and nonsquare, in fact characterize the fundamental solutions. As a corollary, we get a corresponding result for the equation u²-dv²=N, where d is positive and nonsquare, in which case the upper bound estimates were obtained by Nagell and Chebyshev.

On Obláth's problem.

Gica, Alexandru, Panaitopol, Laurenţiu (2003)

Journal of Integer Sequences [electronic only]

On ternary quadratic forms over the rational numbers

Amir Jafari, Farhood Rostamkhani (2022)

Czechoslovak Mathematical Journal

For a ternary quadratic form over the rational numbers, we characterize the set of rational numbers represented by that form over the rational numbers. Consequently, we reprove the classical fact that any positive definite integral ternary quadratic form must fail to represent infinitely many positive integers over the rational numbers. Our proof uses only the quadratic reciprocity law and the Hasse-Minkowski theorem, and is elementary.

On the Diophantine equation x 2 - k x y + y 2 - 2 n = 0

Refik Keskin, Zafer Şiar, Olcay Karaatlı (2013)

Czechoslovak Mathematical Journal

In this study, we determine when the Diophantine equation x 2 - k x y + y 2 - 2 n = 0 has an infinite number of positive integer solutions x and y for 0 n 10 . Moreover, we give all positive integer solutions of the same equation for 0 n 10 in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation x 2 - k x y + y 2 - 2 n = 0 .

Currently displaying 1 – 20 of 37

Page 1 Next