Minimal, rigid foliations by curves on
We prove the existence of minimal and rigid singular holomorphic foliations by curves on the projective space for every dimension and every degree . Precisely, we construct a foliation which is induced by a homogeneous vector field of degree , has a finite singular set and all the regular leaves are dense in the whole of . Moreover, satisfies many additional properties expected from chaotic dynamics and is rigid in the following sense: if is conjugate to another holomorphic foliation...