Displaying 41 – 60 of 1411

Showing per page

A note on the Cahn-Hilliard equation in H 1 ( N ) involving critical exponent

Jan W. Cholewa, Aníbal Rodríguez-Bernal (2014)

Mathematica Bohemica

We consider the Cahn-Hilliard equation in H 1 ( N ) with two types of critically growing nonlinearities: nonlinearities satisfying a certain limit condition as | u | and logistic type nonlinearities. In both situations we prove the H 2 ( N ) -bound on the solutions and show that the individual solutions are suitably attracted by the set of equilibria. This complements the results in the literature; see J. W. Cholewa, A. Rodriguez-Bernal (2012).

A predictive method allowing the use of a single ionic model in numerical cardiac electrophysiology

M. Rioux, Y. Bourgault (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

One of the current debate about simulating the electrical activity in the heart is the following: Using a realistic anatomical setting, i.e. realistic geometries, fibres orientations, etc., is it enough to use a simplified 2-variable phenomenological model to reproduce the main characteristics of the cardiac action potential propagation, and in what sense is it sufficient? Using a combination of dimensional and asymptotic analysis, together with the well-known Mitchell − Schaeffer model, it is shown...

A quantitative asymptotic theorem for contraction semigroups with countable unitary spectrum

Charles Batty, Zdzisław Brzeźniak, David Greenfield (1996)

Studia Mathematica

Let T be a semigroup of linear contractions on a Banach space X, and let X s ( T ) = x X : l i m s T ( s ) x = 0 . Then X s ( T ) is the annihilator of the bounded trajectories of T*. If the unitary spectrum of T is countable, then X s ( T ) is the annihilator of the unitary eigenvectors of T*, and l i m s T ( s ) x = i n f x - y : y X s ( T ) for each x in X.

A Reduced Model for Flame-Flow Interaction

P. Gordon, M. Frankel, G. Sivashinsky (2010)

Mathematical Modelling of Natural Phenomena

The paper is concerned with an extension of the classical relation between the flame speed and the curvature-flow stretch, valid only for high Lewis numbers (diffusively stable flames). At low Lewis numbers the corresponding flame-flow system suffers short-wavelength instability, making the associated initial value problem ill-posed. In this study the difficulty is resolved by incorporation of higher-order effects. As a result one ends up with a reduced model based on a coupled system of second-order...

A review on the improved regularity for the primitive equations

Francisco Guillén-González, María Ángeles Rodríguez-Bellido (2005)

Banach Center Publications

In this work we will study some types of regularity properties of solutions for the geophysical model of hydrostatic Navier-Stokes equations, the so-called Primitive Equations (PE). Also, we will present some results about uniqueness and asymptotic behavior in time.

Currently displaying 41 – 60 of 1411