Page 1

Displaying 1 – 2 of 2

Showing per page

A parameter-free smoothness indicator for high-resolution finite element schemes

Dmitri Kuzmin, Friedhelm Schieweck (2013)

Open Mathematics

This paper presents a postprocessing technique for estimating the local regularity of numerical solutions in high-resolution finite element schemes. A derivative of degree p ≥ 0 is considered to be smooth if a discontinuous linear reconstruction does not create new maxima or minima. The intended use of this criterion is the identification of smooth cells in the context of p-adaptation or selective flux limiting. As a model problem, we consider a 2D convection equation discretized with bilinear finite...

Analysis of an Asymptotic Preserving Scheme for Relaxation Systems

Francis Filbet, Amélie Rambaud (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider an asymptotic preserving numerical scheme initially proposed by F. Filbet and S. Jin [J. Comput. Phys. 229 (2010)] and G. Dimarco and L. Pareschi [SIAM J. Numer. Anal. 49 (2011) 2057–2077] in the context of nonlinear and stiff kinetic equations. Here, we propose a convergence analysis of such a scheme for the approximation of a system of transport equations with a nonlinear source term, for which the asymptotic limit is given by a conservation law. We investigate the convergence of the...

Currently displaying 1 – 2 of 2

Page 1