Page 1

Displaying 1 – 4 of 4

Showing per page

Reduced basis method for finite volume approximations of parametrized linear evolution equations

Bernard Haasdonk, Mario Ohlberger (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The model order reduction methodology of reduced basis (RB) techniques offers efficient treatment of parametrized partial differential equations (P2DEs) by providing both approximate solution procedures and efficient error estimates. RB-methods have so far mainly been applied to finite element schemes for elliptic and parabolic problems. In the current study we extend the methodology to general linear evolution schemes such as finite volume schemes for parabolic and hyperbolic evolution equations....

Remarks on weak stabilization of semilinear wave equations

Alain Haraux (2001)

ESAIM: Control, Optimisation and Calculus of Variations

If a second order semilinear conservative equation with esssentially oscillatory solutions such as the wave equation is perturbed by a possibly non monotone damping term which is effective in a non negligible sub-region for at least one sign of the velocity, all solutions of the perturbed system converge weakly to 0 as time tends to infinity. We present here a simple and natural method of proof of this kind of property, implying as a consequence some recent very general results of Judith Vancostenoble....

Remarks on weak stabilization of semilinear wave equations

Alain Haraux (2010)

ESAIM: Control, Optimisation and Calculus of Variations

If a second order semilinear conservative equation with esssentially oscillatory solutions such as the wave equation is perturbed by a possibly non monotone damping term which is effective in a non negligible sub-region for at least one sign of the velocity, all solutions of the perturbed system converge weakly to 0 as time tends to infinity. We present here a simple and natural method of proof of this kind of property, implying as a consequence some recent very general results of Judith Vancostenoble. ...

Resolvent estimates in controllability theory and applications to the discrete wave equation

Sylvain Ervedoza (2009)

Journées Équations aux dérivées partielles

We briefly present the difficulties arising when dealing with the controllability of the discrete wave equation, which are, roughly speaking, created by high-frequency spurious waves which do not travel. It is by now well-understood that such spurious waves can be dealt with by applying some convenient filtering technique. However, the scale of frequency in which we can guarantee that none of these non-traveling waves appears is still unknown in general. Though, using Hautus tests, which read the...

Currently displaying 1 – 4 of 4

Page 1