Page 1

Displaying 1 – 6 of 6

Showing per page

Mathematical modeling of semiconductor quantum dots based on the nonparabolic effective-mass approximation

Jinn-Liang Liu (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Within the effective mass and nonparabolic band theory, a general framework of mathematical models and numerical methods is developed for theoretical studies of semiconductor quantum dots. It includes single-electron models and many-electron models of Hartree-Fock, configuration interaction, and current-spin density functional theory approaches. These models result in nonlinear eigenvalue problems from a suitable discretization. Cubic and quintic Jacobi-Davidson methods of block or nonblock version...

Multiple solutions for nonlinear discontinuous elliptic problems near resonance

Nikolaos Kourogenis, Nikolaos Papageorgiou (1999)

Colloquium Mathematicae

We consider a quasilinear elliptic eigenvalue problem with a discontinuous right hand side. To be able to have an existence theory, we pass to a multivalued problem (elliptic inclusion). Using a variational approach based on the critical point theory for locally Lipschitz functions, we show that we have at least three nontrivial solutions when λ λ 1 from the left, λ 1 being the principal eigenvalue of the p-Laplacian with the Dirichlet boundary conditions.

Currently displaying 1 – 6 of 6

Page 1