Page 1

Displaying 1 – 2 of 2

Showing per page

Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law

Manuel Bernard, Stéphane Dellacherie, Gloria Faccanoni, Bérénice Grec, Yohan Penel (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we are interested in modelling the flow of the coolant (water) in a nuclear reactor core. To this end, we use a monodimensional low Mach number model supplemented with the stiffened gas law. We take into account potential phase transitions by a single equation of state which describes both pure and mixture phases. In some particular cases, we give analytical steady and/or unsteady solutions which provide qualitative information about the flow. In the second part of the paper, we introduce...

Supplementary balance laws for Cattaneo heat propagation

Serge Preston (2013)

Communications in Mathematics

In this work we determine for the Cattaneo heat propagation system all the supplementary balance laws (shortly SBL) of the same order (zero) as the system itself and extract the constitutive relations (expression for the internal energy) dictated by the Entropy Principle. The space of all supplementary balance laws (having the functional dimension 8) contains four original balance laws and their deformations depending on 4 functions of temperature ( λ 0 ( ϑ ) , K A ( ϑ ) , A = 1 , 2 , 3 ). The requirements of the II law of thermodynamics...

Currently displaying 1 – 2 of 2

Page 1