A Banach space with a symmetric basis which contains no or , and all its symmetric basic sequences are equivalent
We introduce and study a natural class of variable exponent spaces, which generalizes the classical spaces and c₀. These spaces will typically not be rearrangement-invariant but instead they enjoy a good local control of some geometric properties. Some geometric examples are constructed by using these spaces.
There is a nontrivial gap in the proof of Theorem 5.2 of [2] which is one of the main results of that paper and has been applied three times (cf. [2, Theorem 5.3, (G) in Section 6, Theorem 6.4]). Till now neither the gap has been closed nor a counterexample found. The aim of this paper is to give, by means of some general results, a better understanding of the gap. The proofs that the applications hold will be given elsewhere.