Page 1

Displaying 1 – 13 of 13

Showing per page

Quantum expanders and geometry of operator spaces

Gilles Pisier (2014)

Journal of the European Mathematical Society

We show that there are well separated families of quantum expanders with asymptotically the maximal cardinality allowed by a known upper bound. This has applications to the “growth" of certain operator spaces: It implies asymptotically sharp estimates for the growth of the multiplicity of M N -spaces needed to represent (up to a constant C > 1 ) the M N -version of the n -dimensional operator Hilbert space O H n as a direct sum of copies of M N . We show that, when C is close to 1, this multiplicity grows as exp β n N 2 for...

Quantum Itô B*-algebras, their classification and decomposition

V. Belavkin (1998)

Banach Center Publications

A simple axiomatic characterization of the general (infinite dimensional, noncommutative) Itô algebra is given and a pseudo-Euclidean fundamental representation for such algebra is described. The notion of Itô B*-algebra, generalizing the C*-algebra, is defined to include the Banach infinite dimensional Itô algebras of quantum Brownian and quantum Lévy motion, and the B*-algebras of vacuum and thermal quantum noise are characterized. It is proved that every Itô algebra is canonically decomposed...

Quasi *-algebras and generalized inductive limits of C*-algebras

Giorgia Bellomonte, Camillo Trapani (2011)

Studia Mathematica

A generalized procedure for the construction of the inductive limit of a family of C*-algebras is proposed. The outcome is no more a C*-algebra but, under certain assumptions, a locally convex quasi *-algebra, named a C*-inductive quasi *-algebra. The properties of positive functionals and representations of C*-inductive quasi *-algebras are investigated, in close connection with the corresponding properties of positive functionals and representations of the C*-algebras that generate the structure....

Quasi *-algebras of measurable operators

Fabio Bagarello, Camillo Trapani, Salvatore Triolo (2006)

Studia Mathematica

Non-commutative L p -spaces are shown to constitute examples of a class of Banach quasi *-algebras called CQ*-algebras. For p ≥ 2 they are also proved to possess a sufficient family of bounded positive sesquilinear forms with certain invariance properties. CQ*-algebras of measurable operators over a finite von Neumann algebra are also constructed and it is proven that any abstract CQ*-algebra (,₀) with a sufficient family of bounded positive tracial sesquilinear forms can be represented as a CQ*-algebra...

Quasi-multipliers of the algebra of approximable operators and its duals

Michael Grosser (1997)

Studia Mathematica

Let A be the Banach algebra K 0 ( X ) of approximable operators on an arbitrary Banach space X. For the spaces of all bilinear continuous quasi-multipliers of A resp. its dual A* resp. its bidual A**, concrete representations as spaces of operators are given.

Quasinilpotent operators in operator Lie algebras II

Peng Cao (2009)

Studia Mathematica

In this paper, it is proved that the Banach algebra ( ) ¯ , generated by a Lie algebra ℒ of operators, consists of quasinilpotent operators if ℒ consists of quasinilpotent operators and ( ) ¯ consists of polynomially compact operators. It is also proved that ( ) ¯ consists of quasinilpotent operators if ℒ is an essentially nilpotent Engel Lie algebra generated by quasinilpotent operators. Finally, Banach algebras generated by essentially nilpotent Lie algebras are shown to be compactly quasinilpotent.

Quasinormal operators are hyperreflexive

Kamila Kliś, Marek Ptak (2005)

Banach Center Publications

We will prove the statement in the title. We also give a better estimate for the hyperreflexivity constant for an analytic Toeplitz operator.

Currently displaying 1 – 13 of 13

Page 1