The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 28 of 28

Showing per page

Homogenization of periodic nonconvex integral functionals in terms of Young measures

Omar Anza Hafsa, Jean-Philippe Mandallena, Gérard Michaille (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the Γ-limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and Pedregal. We also make precise the relationship between our homogenized density and the classical one.

Homogenization of some nonlinear problems with specific dependence upon coordinates

P. Courilleau, S. Fabre, J. Mossino (2001)

Bollettino dell'Unione Matematica Italiana

Questo articolo considera una successione di equazioni differenziali a derivate parziali non lineari in forma di divergenza del tipo - div Q ϵ G x , N ϵ u = f ϵ , in un dominio limitato Ω dello spazio n -dimensionale; Q ϵ = Q ϵ x e N ϵ = N ϵ x sono matrici con coefficenti limitati, N ϵ e è invertibile e la sua matrice inversa R ϵ ha anche coefficenti limitati. La non linearità è dovuta alla funzione G = G x , ξ ; la condizione di crescita, la monotonicità e le ipotesi di coercitività sono modellate sul p -Laplaciano, 1 < p < , ed assicurano l'esistenza di una soluzione...

Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set

Luciano Carbone, Doina Cioranescu, Riccardo De Arcangelis, Antonio Gaudiello (2004)

ESAIM: Control, Optimisation and Calculus of Variations

The paper is a continuation of a previous work of the same authors dealing with homogenization processes for some energies of integral type arising in the modeling of rubber-like elastomers. The previous paper took into account the general case of the homogenization of energies in presence of pointwise oscillating constraints on the admissible deformations. In the present paper homogenization processes are treated in the particular case of fixed constraints set, in which minimal coerciveness hypotheses...

Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set

Luciano Carbone, Doina Cioranescu, Riccardo De Arcangelis, Antonio Gaudiello (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The paper is a continuation of a previous work of the same authors dealing with homogenization processes for some energies of integral type arising in the modeling of rubber-like elastomers. The previous paper took into account the general case of the homogenization of energies in presence of pointwise oscillating constraints on the admissible deformations. In the present paper homogenization processes are treated in the particular case of fixed constraints set, in which minimal coerciveness hypotheses...

Homogenization of variational problems in manifold valued Sobolev spaces

Jean-François Babadjian, Vincent Millot (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Homogenization of integral functionals is studied under the constraint that admissible maps have to take their values into a given smooth manifold. The notion of tangential homogenization is defined by analogy with the tangential quasiconvexity introduced by Dacorogna et al. [Calc. Var. Part. Diff. Eq. 9 (1999) 185–206]. For energies with superlinear or linear growth, a Γ-convergence result is established in Sobolev spaces, the homogenization problem in the space of functions of bounded variation...

How to state necessary optimality conditions for control problems with deviating arguments?

Lassana Samassi, Rabah Tahraoui (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this paper is to give a general idea to state optimality conditions of control problems in the following form: inf ( u , v ) 𝒰 a d 0 1 f t , u ( θ v ( t ) ) , u ' ( t ) , v ( t ) d t , (1) where 𝒰 a d is a set of admissible controls and θ v is the solution of the following equation: { d θ ( t ) d t = g ( t , θ ( t ) , v ( t ) ) , t [ 0 , 1 ] ; θ ( 0 ) = θ 0 , θ ( t ) [ 0 , 1 ] t . (2). The results are nonlocal and new.

Currently displaying 21 – 28 of 28

Previous Page 2