The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 43

Showing per page

Homotopy method for minimum consumption orbit transfer problem

Joseph Gergaud, Thomas Haberkorn (2006)

ESAIM: Control, Optimisation and Calculus of Variations

The numerical resolution of the low thrust orbital transfer problem around the Earth with the maximization of the final mass or minimization of the consumption is investigated. This problem is difficult to solve by shooting method because the optimal control is discontinuous and a homotopic method is proposed to deal with these difficulties for which convergence properties are established. For a thrust of 0.1 Newton and a final time 50% greater than the minimum one, we obtain 1786 switching times....

Inverse problems in spaces of measures

Kristian Bredies, Hanna Katriina Pikkarainen (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The ill-posed problem of solving linear equations in the space of vector-valued finite Radon measures with Hilbert space data is considered. Approximate solutions are obtained by minimizing the Tikhonov functional with a total variation penalty. The well-posedness of this regularization method and further regularization properties are mentioned. Furthermore, a flexible numerical minimization algorithm is proposed which converges subsequentially in the weak* sense and with rate 𝒪(n-1)...

Iterative algorithms for variational inclusions, mixed equilibrium and fixed point problems with application to optimization problems

Yonghong Yao, Yeol Cho, Yeong-Cheng Liou (2011)

Open Mathematics

In this paper, we introduce an iterative algorithm for finding a common element of the set of solutions of a mixed equilibrium problem, the set of fixed points of a nonexpansive mapping, and the the set of solutions of a variational inclusion in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a common element of the above three sets, which is a solution of a certain optimization problem related to a strongly positive bounded linear operator....

New regularity results and improved error estimates for optimal control problems with state constraints

Eduardo Casas, Mariano Mateos, Boris Vexler (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we are concerned with a distributed optimal control problem governed by an elliptic partial differential equation. State constraints of box type are considered. We show that the Lagrange multiplier associated with the state constraints, which is known to be a measure, is indeed more regular under quite general assumptions. We discretize the problem by continuous piecewise linear finite elements and we are able to prove that, for the case of a linear equation, the order of convergence...

On existence of solutions to degenerate nonlinear optimization problems

Agnieszka Prusińska, Alexey Tret'yakov (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We investigate the existence of the solution to the following problem min φ(x) subject to G(x)=0, where φ: X → ℝ, G: X → Y and X,Y are Banach spaces. The question of existence is considered in a neighborhood of such point x₀ that the Hessian of the Lagrange function is degenerate. There was obtained an approximation for the distance of solution x* to the initial point x₀.

On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints

Ira Neitzel, Fredi Tröltzsch (2009)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study Lavrentiev-type regularization concepts for linear-quadratic parabolic control problems with pointwise state constraints. In the first part, we apply classical Lavrentiev regularization to a problem with distributed control, whereas in the second part, a Lavrentiev-type regularization method based on the adjoint operator is applied to boundary control problems with state constraints in the whole domain. The analysis for both classes of control problems is investigated and...

On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints

Ira Neitzel, Fredi Tröltzsch (2008)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study Lavrentiev-type regularization concepts for linear-quadratic parabolic control problems with pointwise state constraints. In the first part, we apply classical Lavrentiev regularization to a problem with distributed control, whereas in the second part, a Lavrentiev-type regularization method based on the adjoint operator is applied to boundary control problems with state constraints in the whole domain. The analysis for both classes of control problems is investigated and...

Optimal control problems on parallelizable riemannian manifolds : theory and applications

Ram V. Iyer, Raymond Holsapple, David Doman (2006)

ESAIM: Control, Optimisation and Calculus of Variations

The motivation for this work is the real-time solution of a standard optimal control problem arising in robotics and aerospace applications. For example, the trajectory planning problem for air vehicles is naturally cast as an optimal control problem on the tangent bundle of the Lie Group S E ( 3 ) , which is also a parallelizable riemannian manifold. For an optimal control problem on the tangent bundle of such a manifold, we use frame co-ordinates and obtain first-order necessary conditions employing calculus...

Optimal control problems on parallelizable Riemannian manifolds: theory and applications

Ram V. Iyer, Raymond Holsapple, David Doman (2005)

ESAIM: Control, Optimisation and Calculus of Variations

The motivation for this work is the real-time solution of a standard optimal control problem arising in robotics and aerospace applications. For example, the trajectory planning problem for air vehicles is naturally cast as an optimal control problem on the tangent bundle of the Lie Group SE(3), which is also a parallelizable Riemannian manifold. For an optimal control problem on the tangent bundle of such a manifold, we use frame co-ordinates and obtain first-order necessary conditions...

Optimal impulsive control of delay systems

Florent Delmotte, Erik I. Verriest, Magnus Egerstedt (2008)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we solve an optimal control problem using the calculus of variation. The system under consideration is a switched autonomous delay system that undergoes jumps at the switching times. The control variables are the instants when the switches occur, and a set of scalars which determine the jump amplitudes. Optimality conditions involving analytic expressions for the partial derivatives of a given cost function with respect to the control variables are derived using the calculus of variation....

Currently displaying 21 – 40 of 43