Page 1

Displaying 1 – 11 of 11

Showing per page

A certified reduced basis method for parametrized elliptic optimal control problems

Mark Kärcher, Martin A. Grepl (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we employ the reduced basis method as a surrogate model for the solution of linear-quadratic optimal control problems governed by parametrized elliptic partial differential equations. We present a posteriori error estimation and dual procedures that provide rigorous bounds for the error in several quantities of interest: the optimal control, the cost functional, and general linear output functionals of the control, state, and adjoint variables. We show that, based on the assumption...

A moving mesh fictitious domain approach for shape optimization problems

Raino A.E. Mäkinen, Tuomo Rossi, Jari Toivanen (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A new numerical method based on fictitious domain methods for shape optimization problems governed by the Poisson equation is proposed. The basic idea is to combine the boundary variation technique, in which the mesh is moving during the optimization, and efficient fictitious domain preconditioning in the solution of the (adjoint) state equations. Neumann boundary value problems are solved using an algebraic fictitious domain method. A mixed formulation based on boundary Lagrange multipliers is...

A Posteriori Error Estimation for Reduced Order Solutions of Parametrized Parabolic Optimal Control Problems

Mark Kärcher, Martin A. Grepl (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the efficient and reliable solution of linear-quadratic optimal control problems governed by parametrized parabolic partial differential equations. To this end, we employ the reduced basis method as a low-dimensional surrogate model to solve the optimal control problem and develop a posteriori error estimation procedures that provide rigorous bounds for the error in the optimal control and the associated cost functional. We show that our approach can be applied to problems involving...

A quasi-variational inequality problem arising in the modeling of growing sandpiles

John W. Barrett, Leonid Prigozhin (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Existence of a solution to the quasi-variational inequality problem arising in a model for sand surface evolution has been an open problem for a long time. Another long-standing open problem concerns determining the dual variable, the flux of sand pouring down the evolving sand surface, which is also of practical interest in a variety of applications of this model. Previously, these problems were solved for the special case in which the inequality is simply variational. Here, we introduce a regularized...

A variationally consistent generalized variable formulation of the elastoplastic rate problem

Claudia Comi, Umberto Perego (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry...

An active set strategy based on the augmented Lagrangian formulation for image restoration

Kazufumi Ito, Karl Kunisch (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Lagrangian and augmented Lagrangian methods for nondifferentiable optimization problems that arise from the total bounded variation formulation of image restoration problems are analyzed. Conditional convergence of the Uzawa algorithm and unconditional convergence of the first order augmented Lagrangian schemes are discussed. A Newton type method based on an active set strategy defined by means of the dual variables is developed and analyzed. Numerical examples for blocky signals and images perturbed by...

Currently displaying 1 – 11 of 11

Page 1