Eine Kennzeichnung topologischer Räume durch Vervollständigungen.
A quasi-factor of a minimal flow is a minimal subset of the induced flow on the space of closed subsets. We study a particular kind of quasi-factor (a 'joining' quasi-factor) using the Galois theory of minimal flows. We also investigate the relation between factors and quasi-factors.
It was proved in [HM] that each topological group (G,·,τ) may be embedded into a connected topological group (Ĝ,•,τ̂). In fact, two methods of introducing τ̂ were given. In this note we show relations between them.
A space is discretely absolutely star-Lindelöf if for every open cover of and every dense subset of , there exists a countable subset of such that is discrete closed in and , where . We show that every Hausdorff star-Lindelöf space can be represented in a Hausdorff discretely absolutely star-Lindelöf space as a closed subspace.
In this paper we address the following question due to Marcy Barge: For what f:I → I is it the case that the inverse limit of I with single bonding map f can be embedded in the plane so that the shift homeomorphism extends to a diffeomorphism ([BB, Problem 1.5], [BK, Problem 3])? This question could also be phrased as follows: Given a map f:I → I, find a diffeomorphism so that F restricted to its full attracting set, , is topologically conjugate to . In this situation, we say that the inverse...