Page 1 Next

Displaying 1 – 20 of 100

Showing per page

A mixed finite element method for Darcy flow in fractured porous media with non-matching grids

Carlo D’Angelo, Anna Scotti (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider an incompressible flow problem in a N-dimensional fractured porous domain (Darcy’s problem). The fracture is represented by a (N − 1)-dimensional interface, exchanging fluid with the surrounding media. In this paper we consider the lowest-order (ℝ T0, ℙ0) Raviart-Thomas mixed finite element method for the approximation of the coupled Darcy’s flows in the porous media and within the fracture, with independent meshes for the respective domains. This is achieved thanks to an enrichment...

A mixed finite element method for Darcy flow in fractured porous media with non-matching grids∗

Carlo D’Angelo, Anna Scotti (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider an incompressible flow problem in a N-dimensional fractured porous domain (Darcy’s problem). The fracture is represented by a (N − 1)-dimensional interface, exchanging fluid with the surrounding media. In this paper we consider the lowest-order (ℝ T0, ℙ0) Raviart-Thomas mixed finite element method for the approximation of the coupled Darcy’s flows in the porous media and within the fracture, with independent meshes for the respective...

A multilevel method with correction by aggregation for solving discrete elliptic problems

Radim Blaheta (1986)

Aplikace matematiky

The author studies the behaviour of a multi-level method that combines the Jacobi iterations and the correction by aggragation of unknowns. Our considerations are restricted to a simple one-dimensional example, which allows us to employ the technique of the Fourier analysis. Despite of this restriction we are able to demonstrate differences between the behaviour of the algorithm considered and of multigrid methods employing interpolation instead of aggregation.

A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems

Josef Dalík (1991)

Applications of Mathematics

A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation - ϵ u n + p u ' + q u = f are presented and analyzed theoretically. The positive number ϵ is supposed to be much less than the discretization step and the values of p , q . An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.

A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems

Torsten Linß (2014)

Applications of Mathematics

FEM discretizations of arbitrary order r are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.

Currently displaying 1 – 20 of 100

Page 1 Next