Page 1

Displaying 1 – 6 of 6

Showing per page

Galerkin time-stepping methods for nonlinear parabolic equations

Georgios Akrivis, Charalambos Makridakis (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.

Galerkin time-stepping methods for nonlinear parabolic equations

Georgios Akrivis, Charalambos Makridakis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.

Gaussian curvature based tangential redistribution of points on evolving surfaces

Medľa, Matej, Mikula, Karol (2017)

Proceedings of Equadiff 14

There exist two main methods for computing a surface evolution, level-set method and Lagrangian method. Redistribution of points is a crucial element in a Lagrangian approach. In this paper we present a point redistribution that compress quads in the areas with a high Gaussian curvature. Numerical method is presented for a mean curvature flow of a surface approximated by quads.

Genuinely multi-dimensional non-dissipative finite-volume schemes for transport

Bruno Després, Frédéric Lagoutière (2007)

International Journal of Applied Mathematics and Computer Science

We develop a new multidimensional finite-volume algorithm for transport equations. This algorithm is both stable and non-dissipative. It is based on a reconstruction of the discrete solution inside each cell at every time step. The proposed reconstruction, which is genuinely multidimensional, allows recovering sharp profiles in both the direction of the transport velocity and the transverse direction. It constitutes an extension of the one-dimensional reconstructions analyzed in (Lagoutière, 2005;...

Grid adjustment based on a posteriori error estimators

Karel Segeth (1993)

Applications of Mathematics

The adjustment of one-dimensional space grid for a parabolic partial differential equation solved by the finite element method of lines is considered in the paper. In particular, the approach based on a posteriori error indicators and error estimators is studied. A statement on the rate of convergence of the approximation of error by estimator to the error in the case of a system of parabolic equations is presented.

Currently displaying 1 – 6 of 6

Page 1