Page 1

Displaying 1 – 14 of 14

Showing per page

The asymptotical stability of a dynamic system uppercasewith structural damping

Xuezhang Hou (2003)

International Journal of Applied Mathematics and Computer Science

A dynamic system with structural damping described by partial differential equations is investigated. The system is first converted to an abstract evolution equation in an appropriate Hilbert space, and the spectral and semigroup properties of the system operator are discussed. Finally, the well-posedness and the asymptotical stability of the system are obtained by means of a semigroup of linear operators.

The existence of a solution and a numerical method for the Timoshenko nonlinear wave system

Jemal Peradze (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The initial boundary value problem for a beam is considered in the Timoshenko model. Assuming the analyticity of the initial conditions, it is proved that the problem is solvable throughout the time interval. After that, a numerical algorithm, consisting of three steps, is constructed. The solution is approximated with respect to the spatial and time variables using the Galerkin method and a Crank–Nicholson type scheme. The system of equations obtained by discretization is solved by a version of...

The existence of a solution and a numerical method for the Timoshenko nonlinear wave system

Jemal Peradze (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The initial boundary value problem for a beam is considered in the Timoshenko model. Assuming the analyticity of the initial conditions, it is proved that the problem is solvable throughout the time interval. After that, a numerical algorithm, consisting of three steps, is constructed. The solution is approximated with respect to the spatial and time variables using the Galerkin method and a Crank–Nicholson type scheme. The system of equations obtained by discretization is solved by a version...

Thick obstacle problems with dynamic adhesive contact

Jeongho Ahn (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we consider dynamic frictionless contact with adhesion between a viscoelastic body of the Kelvin-Voigt type and a stationary rigid obstacle, based on the Signorini's contact conditions. Including the adhesion processes modeled by the bonding field, a new version of energy function is defined. We use the energy function to derive a new form of energy balance which is supported by numerical results. Employing the time-discretization, we establish a numerical formulation and investigate...

Time-periodic solutions of a quasilinear beam equation via accelerated convergence methods

Eduard Feireisl (1988)

Aplikace matematiky

The author investigates time-periodic solutions of the quasilinear beam equation with the help of accelerated convergence methods. Using the Newton iteration scheme, the problem is approximated by a sequence of linear equations solved via the Galerkin method. The derivatiove loss inherent to this kind of problems is compensated by taking advantage of smoothing operators.

Two-mode bifurcation in solution of a perturbed nonlinear fourth order differential equation

Ahmed Abbas Mizeal, Mudhir A. Abdul Hussain (2012)

Archivum Mathematicum

In this paper, we are interested in the study of bifurcation solutions of nonlinear wave equation of elastic beams located on elastic foundations with small perturbation by using local method of Lyapunov-Schmidt.We showed that the bifurcation equation corresponding to the elastic beams equation is given by the nonlinear system of two equations. Also, we found the parameters equation of the Discriminant set of the specified problem as well as the bifurcation diagram.

Currently displaying 1 – 14 of 14

Page 1