Page 1

Displaying 1 – 11 of 11

Showing per page

Mathematical analysis of a within-host model of malaria with immune effectors and Holling type II functional response

F. Gazori, M. Hesaaraki (2015)

Applicationes Mathematicae

In this paper, we consider a within-host model of malaria with Holling type II functional response. The model describes the dynamics of the blood-stage of parasites and their interaction with host cells, in particular red blood cells and immune effectors. First, we obtain equilibrium points of the system. The global stability of the disease-free equilibrium point is established when the basic reproduction ratio of infection is R₀< 1. Then the disease is controllable and dies out. In the absence...

Mathematical and Computational Models in Tumor Immunology

F. Pappalardo, A. Palladini, M. Pennisi, F. Castiglione, S. Motta (2012)

Mathematical Modelling of Natural Phenomena

The immune system is able to protect the host from tumor onset, and immune deficiencies are accompanied by an increased risk of cancer. Immunology is one of the fields in biology where the role of computational and mathematical modeling and analysis were recognized the earliest, beginning from 60s of the last century. We introduce the two most common methods in simulating the competition among the immune system, cancers and tumor immunology strategies:...

Mathematical Biology Education: Modeling Makes Meaning

J. R. Jungck (2011)

Mathematical Modelling of Natural Phenomena

This special issue of Mathematical Modelling of Natural Phenomena on biomathematics education shares the work of fifteen groups at as many different institutions that have developed beautiful biological applications of mathematics that are different in three ways from much of what is currently available. First, many of these selections utilize current research in biomathematics rather than the well-known textbook examples that are at least a half-century old. Second, the selections focus on modules...

Mathematical model of tumour cord growth along the source of nutrient

S. Astanin, A. Tosin (2010)

Mathematical Modelling of Natural Phenomena

A mathematical model of the tumour growth along a blood vessel is proposed. The model employs the mixture theory approach to describe a tissue which consists of cells, extracellular matrix and liquid. The growing tumour tissue is supposed to be surrounded by the host tissue. Tumours where complete oxydation of glucose prevails are considered. Special attention is paid to consistent description of oxygen consumption and growth processes based on the energy balance. A finite difference numerical...

Mathematical Modelling of Tumour Dormancy

K. M. Page (2009)

Mathematical Modelling of Natural Phenomena

Many tumours undergo periods in which they apparently do not grow but remain at a roughly constant size for extended periods. This is termed tumour dormancy. The mechanisms responsible for dormancy include failure to develop an internal blood supply, individual tumour cells exiting the cell cycle and a balance between the tumour and the immune response to it. Tumour dormancy is of considerable importance in the natural history of cancer. In many cancers, and in particular in breast cancer, recurrence...

Microscale Complexity in the Ocean: Turbulence, Intermittency and Plankton Life

L. Seuront (2008)

Mathematical Modelling of Natural Phenomena

This contribution reviews the nonlinear stochastic properties of turbulent velocity and passive scalar intermittent fluctuations in Eulerian and Lagrangian turbulence. These properties are illustrated with original data sets of (i) velocity fluctuations collected in the field and in the laboratory, and (ii) temperature, salinity and in vivo fluorescence (a proxy of phytoplankton biomass, i.e. unicelled vegetals passively advected by turbulence) sampled from highly turbulent coastal waters. The strength...

Microscopic Modelling of Active Bacterial Suspensions

A. Decoene, S. Martin, B. Maury (2011)

Mathematical Modelling of Natural Phenomena

We present two-dimensional simulations of chemotactic self-propelled bacteria swimming in a viscous fluid. Self-propulsion is modelled by a couple of forces of same intensity and opposite direction applied on the rigid bacterial body and on an associated region in the fluid representing the flagellar bundle. The method for solving the fluid flow and the motion of the bacteria is based on a variational formulation written on the whole domain, strongly...

Modelling Circadian Rhythms in Drosophila and Investigation of VRI and PDP1 Feedback Loops Using a New Mathematical Model

D. Kulasiri, Z. Xie (2008)

Mathematical Modelling of Natural Phenomena

We present a brief review of molecular biological basis and mathematical modelling of circadian rhythms in Drosophila. We discuss pertinent aspects of a new model that incorporates the transcriptional feedback loops revealed so far in the network of the circadian clock (PER/TIM and VRI/PDP1 loops). Conventional Hill functions are not used to describe the regulation of genes, instead the explicit reactions of binding and unbinding processes of transcription factors to promoters are probabilistically...

Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments

J. Clairambault (2009)

Mathematical Modelling of Natural Phenomena

This review aims at presenting a synoptic, if not exhaustive, point of view on some of the problems encountered by biologists and physicians who deal with natural cell proliferation and disruptions of its physiological control in cancer disease. It also aims at suggesting how mathematicians are naturally challenged by these questions and how they might help, not only biologists to deal theoretically with biological complexity, but also physicians to optimise therapeutics, on which last point the...

Multiphase and Multiscale Trends in Cancer Modelling

L. Preziosi, A. Tosin (2009)

Mathematical Modelling of Natural Phenomena

While drawing a link between the papers contained in this issue and those present in a previous one (Vol. 2, Issue 3), this introductory article aims at putting in evidence some trends and challenges on cancer modelling, especially related to the development of multiphase and multiscale models.

Multi-scale Modelling for Threshold Dependent Differentiation

A. Q. Cai, Y. Peng, J. Wells, X. Dai, Q. Nie (2009)

Mathematical Modelling of Natural Phenomena

The maintenance of a stable stem cell population in the epidermis is important for robust regeneration of the stratified epithelium. The population size is usually regulated by cell secreted extracellular signalling molecules as well as intracellular molecules. In this paper, a simple model incorporating both levels of regulation is developed to examine the balance between growth and differentiation for the stem cell population. In particular, the dynamics of a known differentiation regulator c-Myc,...

Currently displaying 1 – 11 of 11

Page 1