Displaying 21 – 40 of 74

Showing per page

Bilinear system as a modelling framework for analysis of microalgal growth

Štěpán Papáček, Sergej Čelikovský, Dalibor Štys, Javier Ruiz (2007)

Kybernetika

A mathematical model of the microalgal growth under various light regimes is required for the optimization of design parameters and operating conditions in a photobioreactor. As its modelling framework, bilinear system with single input is chosen in this paper. The earlier theoretical results on bilinear systems are adapted and applied to the special class of the so-called intermittent controls which are characterized by rapid switching of light and dark cycles. Based on such approach, the following...

Bio-inspired decentralized autonomous robot mobile navigation control for multi agent systems

Alejandro Rodriguez-Angeles, Luis-Fernando Vazquez Chavez (2018)

Kybernetika

This article proposes a decentralized navigation controller for a group of differential mobile robots that yields autonomous navigation, which allows reaching a certain desired position with a specific desired orientation, while avoiding collisions with dynamic and static obstacles. The navigation controller is constituted by two control loops, the so-called external control loop is based on crowd dynamics, it brings autonomous navigation properties to the system, the internal control loop transforms...

Block-based physical modeling with applications in musical acoustics

Rudolf Rabenstein, Stefan Petrausch (2008)

International Journal of Applied Mathematics and Computer Science

Block-based physical modeling is a methodology for modeling physical systems with different subsystems. Each subsystem may be modeled according to a different paradigm. Connecting systems of diverse nature in the discrete-time domain requires a unified interconnection strategy. Such a strategy is provided by the well-known wave digital principle, which had been introduced initially for the design of digital filters. It serves as a starting point for the more general idea of blockbased physical modeling,...

Boolean Biology: Introducing Boolean Networks and Finite Dynamical Systems Models to Biology and Mathematics Courses

R. Robeva, B. Kirkwood, R. Davies (2011)

Mathematical Modelling of Natural Phenomena

Since the release of the Bio 2010 report in 2003, significant emphasis has been placed on initiating changes in the way undergraduate biology and mathematics courses are taught and on creating new educational materials to facilitate those changes. Quantitative approaches, including mathematical models, are now considered critical for the education of the next generation of biologists. In response, mathematics departments across the country have initiated changes to their introductory calculus sequence,...

Bottom-up learning of hierarchical models in a class of deterministic POMDP environments

Hideaki Itoh, Hisao Fukumoto, Hiroshi Wakuya, Tatsuya Furukawa (2015)

International Journal of Applied Mathematics and Computer Science

The theory of partially observable Markov decision processes (POMDPs) is a useful tool for developing various intelligent agents, and learning hierarchical POMDP models is one of the key approaches for building such agents when the environments of the agents are unknown and large. To learn hierarchical models, bottom-up learning methods in which learning takes place in a layer-by-layer manner from the lowest to the highest layer are already extensively used in some research fields such as hidden...

Boundary control of the Maxwell dynamical system: lack of controllability by topological reasons

Mikhail Belishev, Aleksandr Glasman (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with a boundary control problem for the Maxwell dynamical system in a bounbed domain Ω ⊂ R3. Let ΩT ⊂ Ω be the subdomain filled by waves at the moment T, T* the moment at which the waves fill the whole of Ω. The following effect occurs: for small enough T the system is approximately controllable in ΩT whereas for larger T < T* a lack of controllability is possible. The subspace of unreachable states is of finite dimension determined by topological characteristics of ΩT.

Boundary controllability in problems of transmission for a class of second order hyperbolic systems

J. E. Lagnese (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider transmission problems for general second order linear hyperbolic systems having piecewise constant coefficients in a bounded, open connected set with smooth boundary and controlled through the Dirichlet boundary condition. It is proved that such a system is exactly controllable in an appropriate function space provided the interfaces where the coefficients have a jump discontinuity are all star-shaped with respect to one and the same point and the coefficients satisfy a certain...

Currently displaying 21 – 40 of 74