The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 2

Displaying 21 – 25 of 25

Showing per page

Boundary stabilization of Maxwell's equations with space-time variable coefficients

Serge Nicaise, Cristina Pignotti (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the stabilization of Maxwell's equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard" identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks. ...

Boundary stabilization of the linear elastodinamic system by a Lyapunov-type method.

Rabah Bey, Amar Heminna, Jean-Pierre Lohéac (2003)

Revista Matemática Complutense

We propose a direct approach to obtain the boundary stabilization of the isotropic linear elastodynamic system by a natural feedback; this method uses local coordinates in the expression of boundary integrals as a main tool. It leads to an explicit decay rate of the energy function and requires weak geometrical conditions: for example, the spacial domain can be the difference of two star-shaped sets.

Currently displaying 21 – 25 of 25

Previous Page 2