Existence and multiplicity of solutions for a -Kirchhoff type problem via variational techniques
A. Mokhtari; Toufik Moussaoui; D. O’Regan
Archivum Mathematicum (2015)
- Volume: 051, Issue: 3, page 163-173
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topReferences
top- Ambrosetti, A., Malchiodi, A., Nonlinear analysis and semilinear elliptic problems, Cambridge Stud. Adv. Math., vol. 14, Cambridge Univ. Press, 2007. (2007) Zbl1125.47052MR2292344
- Antontsev, S.N., Rodrigues, J.F., A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. (2005), 515–545. (2005) MR2103951
- Antontsev, S.N., Rodrigues, J.F., On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII (N.S.) 52 (2006), 19–36. (2006) Zbl1117.76004MR2246902
- Castro, A., Metodos variacionales y analisis functional no linear, X Colóquio Colombiano de Matematicas, 1980. (1980)
- Clarke, D.C., 10.1512/iumj.1973.22.22008, Indiana Univ. Math. J. 22 (1972), 65–74. (1972) MR0296777DOI10.1512/iumj.1973.22.22008
- Corrêa, F.J.S.A., Figueiredo, G.M., 10.1017/S000497270003570X, Bull. Austral. Math. Soc. 74 (2006), 263–277. (2006) Zbl1108.45005MR2260494DOI10.1017/S000497270003570X
- Corrêa, F.J.S.A., Figueiredo, G.M., 10.1016/j.aml.2008.06.042, Appl. Math. Lett. 22 ('2009), 819–822. (2009) Zbl1171.35371MR2523587DOI10.1016/j.aml.2008.06.042
- Dai, G., Wei, J., 10.1016/j.na.2010.07.029, Nonlinear Anal. 73 (2010), 3420–3430. (2010) Zbl1201.35181MR2680035DOI10.1016/j.na.2010.07.029
- Diening, L., Harjulehto, P., Hast"o, P., Ružička, M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., vol. 2017, Springer, New York, 2011. (2011) MR2790542
- Fan, X.L., Zhao, D., On the spaces and , J. Math. Anal. Appl. 263 (2001), 424–446. (2001) MR1866056
- Kavian, O., ‘Introduction ‘a la théorie des points critiques et applications aux problémes elliptiques, Springer-Verlag, 1993. (1993) Zbl0797.58005
- Kirchhoff, G., Mechanik, Teubner, Leipzig, Germany, 1883. (1883)
- Krasnoselskii, M.A., Topological methods in the theory of nonlinear integral equations, MacMillan, New York, 1964. (1964) MR0159197
- Peral, I., Multiplicity of solutions for the p-Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, 1997. (1997)
- Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, Conference Board of the Mathematical Sciences, by the American Mathematical Society, Providence, Rhode Island, 1984. (1984) MR0845785
- Ružička, M., Electro-rheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000. (2000) MR1788852
- Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. (1978) Zbl0387.46033MR0503903
- Zhikov, V.V., 10.1070/IM1987v029n01ABEH000958, Math. USSR Izv. 9 (1987), 33–66. (1987) Zbl0599.49031MR0864171DOI10.1070/IM1987v029n01ABEH000958