Lower semicontinuity of variational integrals on elliptic complexes

Anna Verde

Studia Mathematica (2011)

  • Volume: 204, Issue: 3, page 283-294
  • ISSN: 0039-3223

Abstract

top
We prove a lower semicontinuity result for variational integrals associated with a given first order elliptic complex, extending, in this general setting, a well known result in the case ' ( , ) ' ( , ) c u r l ' ( , n × n ) .

How to cite

top

Anna Verde. "Lower semicontinuity of variational integrals on elliptic complexes." Studia Mathematica 204.3 (2011): 283-294. <http://eudml.org/doc/285409>.

@article{AnnaVerde2011,
abstract = {We prove a lower semicontinuity result for variational integrals associated with a given first order elliptic complex, extending, in this general setting, a well known result in the case $^\{\prime \}(ℝⁿ,ℝ) → \limits ^\{∇\} ^\{\prime \}(ℝⁿ,ℝⁿ) →\limits ^\{curl\} ^\{\prime \}(ℝⁿ,ℝ^\{n×n\})$.},
author = {Anna Verde},
journal = {Studia Mathematica},
keywords = {elliptic complexes; polyconvex integrals; lower semicontinuity},
language = {eng},
number = {3},
pages = {283-294},
title = {Lower semicontinuity of variational integrals on elliptic complexes},
url = {http://eudml.org/doc/285409},
volume = {204},
year = {2011},
}

TY - JOUR
AU - Anna Verde
TI - Lower semicontinuity of variational integrals on elliptic complexes
JO - Studia Mathematica
PY - 2011
VL - 204
IS - 3
SP - 283
EP - 294
AB - We prove a lower semicontinuity result for variational integrals associated with a given first order elliptic complex, extending, in this general setting, a well known result in the case $^{\prime }(ℝⁿ,ℝ) → \limits ^{∇} ^{\prime }(ℝⁿ,ℝⁿ) →\limits ^{curl} ^{\prime }(ℝⁿ,ℝ^{n×n})$.
LA - eng
KW - elliptic complexes; polyconvex integrals; lower semicontinuity
UR - http://eudml.org/doc/285409
ER -

NotesEmbed ?

top

You must be logged in to post comments.