C k -estimates for the ¯ -equation on concave domains of finite type

William Alexandre[1]

  • [1] LMPA, Université du Littoral - Côte d’Opale, maison de la recherche Blaise Pascal, B.P. 699, 62 228 Calais Cedex (France).

Annales de la faculté des sciences de Toulouse Mathématiques (2006)

  • Volume: 15, Issue: 3, page 399-426
  • ISSN: 0240-2963

Abstract

top
C k estimates for convex domains of finite type in n are known from [7] for k = 0 and from [2] for k > 0 . We want to show the same result for concave domains of finite type. As in the case of strictly pseudoconvex domain, we fit the method used in the convex case to the concave one by switching z and ζ in the integral kernel of the operator used in the convex case. However the kernel will not have the same behavior on the boundary as in the Diederich-Fischer-Fornæss-Alexandre work. To overcome this problem we have to alter the Diederich-Fornæss support function. Also we have to take care of the so generated residual term in the homotopy formula.

How to cite

top

Alexandre, William. "$C^k$-estimates for the $\overline{\partial }$-equation on concave domains of finite type." Annales de la faculté des sciences de Toulouse Mathématiques 15.3 (2006): 399-426. <http://eudml.org/doc/10006>.

@article{Alexandre2006,
abstract = {$C^k$ estimates for convex domains of finite type in $\mathbb\{C\}^n$ are known from [7] for $k=0$ and from [2] for $k&gt;0$. We want to show the same result for concave domains of finite type. As in the case of strictly pseudoconvex domain, we fit the method used in the convex case to the concave one by switching $z$ and $\zeta $ in the integral kernel of the operator used in the convex case. However the kernel will not have the same behavior on the boundary as in the Diederich-Fischer-Fornæss-Alexandre work. To overcome this problem we have to alter the Diederich-Fornæss support function. Also we have to take care of the so generated residual term in the homotopy formula.},
affiliation = {LMPA, Université du Littoral - Côte d’Opale, maison de la recherche Blaise Pascal, B.P. 699, 62 228 Calais Cedex (France).},
author = {Alexandre, William},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {pseudo-concave domains; regularity of solutions; Cauchy-Riemann equations},
language = {eng},
number = {3},
pages = {399-426},
publisher = {Université Paul Sabatier, Toulouse},
title = {$C^k$-estimates for the $\overline\{\partial \}$-equation on concave domains of finite type},
url = {http://eudml.org/doc/10006},
volume = {15},
year = {2006},
}

TY - JOUR
AU - Alexandre, William
TI - $C^k$-estimates for the $\overline{\partial }$-equation on concave domains of finite type
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 3
SP - 399
EP - 426
AB - $C^k$ estimates for convex domains of finite type in $\mathbb{C}^n$ are known from [7] for $k=0$ and from [2] for $k&gt;0$. We want to show the same result for concave domains of finite type. As in the case of strictly pseudoconvex domain, we fit the method used in the convex case to the concave one by switching $z$ and $\zeta $ in the integral kernel of the operator used in the convex case. However the kernel will not have the same behavior on the boundary as in the Diederich-Fischer-Fornæss-Alexandre work. To overcome this problem we have to alter the Diederich-Fornæss support function. Also we have to take care of the so generated residual term in the homotopy formula.
LA - eng
KW - pseudo-concave domains; regularity of solutions; Cauchy-Riemann equations
UR - http://eudml.org/doc/10006
ER -

References

top
  1. W. Alexandre, Construction d’une fonction de support à la Diederich-Fornæss, PUB. IRMA, Lille 54 (2001) 
  2. W. Alexandre, C k estimates for ¯ on convex domain of finite type 
  3. J. Bruna, P. Charpentier, Y. Dupain, Zero varieties for the Nevanlinna class in convex domains of finite type in n , Ann. Math. 147 (1998), 391-415 Zbl0912.32001MR1626753
  4. A. Cumenge, Estimées Lipscitz optimales dans les convexes de type fini, C. R. Acad. Sci. Paris 325 (1997), 1077-1080 Zbl0904.32013MR1614008
  5. A. Cumenge, Sharp estimates for ¯ in convex domains of finite type, (1998) 
  6. K. Diederich, J.E. Fornæss, Support functions for convex domains of finite type, Math. Z. 230 (1999), 145-164 Zbl1045.32016MR1671870
  7. K. Diederich, B. Fischer, J. E. Fornæss, Hölder estimates on convex domains of finite type, Math. Z. 232 (1999), 43-61 Zbl0932.32008MR1714279
  8. K. Diederich, E. Mazzilli, Zero varieties for the Nevanlinna class on all convex domains of finite type, Nagoya Math. J. 163 (2001), 215-227 Zbl0994.32003MR1855196
  9. B. Fischer, L p estimates on convex domains of finite type, Math. Z. 236 (2001), 401-418 Zbl0984.32022MR1815835
  10. T. Hefer, Hölder and L p estimates for ¯ on convex domains of finite type depending on Catlin’s multitype, Math. Z. 242 (2002), 367-398 Zbl1048.32024MR1980628
  11. I. Lieb, R. M. Range, Lösungsoperatoren für den Cauchy-Riemann-Komplex mit C k -Abschätzungen, Math. Ann. 253 (1980), 145-164 Zbl0441.32007MR597825
  12. J. D. McNeal, Convex domains of finite type, J. Functional Anal. 108 (1992), 361-373 Zbl0777.31007MR1176680
  13. J. D. McNeal, Estimates on the Bergman kernels of convex domains, Adv. in Math. 109 (1994), 108-139 Zbl0816.32018MR1302759
  14. J. Michel, ¯ -Problem für stückweise streng pseudokonvexe Gebiete in n , Math. Ann. 280 (1988), 46-68 Zbl0617.32032MR928297
  15. R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, (1986), Springer-Verlag, New York Zbl0591.32002MR847923
  16. R. T. Seeley, Extension of C -functions defined in a half space, Proc. Amer. Soc. 15 (1964), 625-626 Zbl0127.28403MR165392

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.