Finiteness and periodicity of beta expansions – number theoretical and dynamical open problems

Shigeki Akiyama[1]

  • [1] Niigata University Japan

Actes des rencontres du CIRM (2009)

  • Volume: 1, Issue: 1, page 3-9
  • ISSN: 2105-0597

How to cite

top

Akiyama, Shigeki. "Finiteness and periodicity of beta expansions – number theoretical and dynamical open problems." Actes des rencontres du CIRM 1.1 (2009): 3-9. <http://eudml.org/doc/10013>.

@article{Akiyama2009,
affiliation = {Niigata University Japan},
author = {Akiyama, Shigeki},
journal = {Actes des rencontres du CIRM},
language = {eng},
month = {3},
number = {1},
pages = {3-9},
publisher = {CIRM},
title = {Finiteness and periodicity of beta expansions – number theoretical and dynamical open problems},
url = {http://eudml.org/doc/10013},
volume = {1},
year = {2009},
}

TY - JOUR
AU - Akiyama, Shigeki
TI - Finiteness and periodicity of beta expansions – number theoretical and dynamical open problems
JO - Actes des rencontres du CIRM
DA - 2009/3//
PB - CIRM
VL - 1
IS - 1
SP - 3
EP - 9
LA - eng
UR - http://eudml.org/doc/10013
ER -

References

top
  1. S. Akiyama, The dynamical norm conjecture and Pisot tilings, Sūrikaisekikenkyūsho Kōkyūroku (1999), no. 1091, 241–250. Zbl0951.11551MR1744913
  2. S. Akiyama, On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan 54 (2002), no. 2, 283–308. Zbl1032.11033MR1883519
  3. —, Pisot number system and its dual tiling, Physics and Theoretical Computer Science, IOS Press, 2007, pp. 133–154. 
  4. S. Akiyama, H. Brunotte, A. Pethő, and W. Steiner, Periodicity of certain piecewise affine planar maps, Tsukuba J. Math. 32 (2008), no. 1, 1–55. Zbl1209.37018MR2433023
  5. S. Akiyama and N. Gjini, Connectedness of number theoretic tilings, Discrete Math. Theor. Comput. Sci. 7 (2005), no. 1, 269–312. Zbl1162.11366MR2183177
  6. V. Berthé and A. Siegel, Purely periodic β -expansions in the Pisot non-unit case, J. Number Theory 127 (2007), no. 2, 153–172. Zbl1197.11139MR2362431
  7. F. Blanchard, β -expansions and symbolic dynamics, Theoret. Comput. Sci. 65 (1989), no. 2, 131–141. Zbl0682.68081MR1020481
  8. D. W. Boyd, Salem numbers of degree four have periodic expansions, Number theory, Walter de Gruyter, 1989, pp. 57–64. Zbl0685.12004MR1024551
  9. —, On the beta expansion for Salem numbers of degree 6, Math. Comp. 65 (1996), 861–875. Zbl0848.11048MR1333306
  10. R. Fischer, Ergodische Theorie von Ziffernentwicklungen in Wahrscheinlichkeitsräumen, Math. Z. 128 (1972), 217–230. Zbl0231.10033MR313475
  11. Ch. Frougny and B. Solomyak, Finite beta-expansions, Ergodic Theory Dynam. Systems 12 (1992), no. 4, 713–723. Zbl0814.68065MR1200339
  12. F. Hofbauer, β -shifts have unique maximal measure, Monatsh. Math. 85 (1978), no. 3, 189–198. Zbl0384.28009MR492180
  13. Sh. Ito and H. Rao, Purely periodic β -expansions with Pisot unit base, Proc. Amer. Math. Soc. 133 (2005), no. 4, 953–964. Zbl1099.11062MR2117194
  14. Sh. Ito and Y. Takahashi, Markov subshifts and realization of β -expansions, J. Math. Soc. Japan 26 (1974), no. 1, 33–55. Zbl0269.28006MR346134
  15. T. Kamae, Numeration systems, fractals and stochastic processes, Israel J. Math. 149 (2005), 87–135, Probability in mathematics. Zbl1155.37306MR2191211
  16. K. Koupstov, J. H. Lowenstein, and F. Vivaldi, Quadratic rational rotations of the torus and dual lattice maps, Nonlinearity 15 (2002), 1795–1842. Zbl1012.37025MR1938473
  17. I. Kubo, H. Murata, and H. Totoki, On the isomorphism problem for endomorphisms of Lebesgue spaces. II, Publ. Res. Inst. Math. Sci. 9 (1973/74), 297–303. Zbl0277.28005MR340551
  18. J. C. Lagarias and Y. Wang, Haar bases for L 2 ( R n ) and algebraic number theory, J. Number Theory 57 (1996), no. 1, 181–197. Zbl0886.11062MR1378581
  19. —, Corrigendum/addendum: “Haar bases for L 2 ( R n ) and algebraic number theory” [J. Number Theory 57 (1996), no. 1, 181–197, J. Number Theory 76 (1999), no. 2, 330–336. Zbl1007.11066MR1684691
  20. J.C. Lagarias and Y. Wang, Integral self-affine tiles in n I. Standard and nonstandard digit sets, J. London Math. Soc. 54 (1996), no. 2, 161–179. Zbl0893.52014MR1395075
  21. —, Self-affine tiles in n , Adv. Math. 121 (1996), 21–49. Zbl0893.52013MR1399601
  22. —, Integral self-affine tiles in n II. Lattice tilings, J. Fourier Anal. Appl. 3 (1997), no. 1, 83–102. Zbl0893.52015MR1428817
  23. W. Parry, On the β -expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416. Zbl0099.28103MR142719
  24. A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493. Zbl0079.08901MR97374
  25. V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Math. 25 (1961), 499–530. Zbl0154.15703MR143873
  26. K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269–278. Zbl0494.10040MR576976
  27. M. Smorodinsky, β -automorphisms are Bernoulli shifts, Acta Math. Acad. Sci. Hungar. 24 (1973), 273–278. Zbl0268.28007MR346133
  28. Y. Takahashi, Isomorphisms of β -automorphisms to Markov automorphisms, Osaka J. Math. 10 (1973), 175–184. Zbl0268.28006MR340552

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.