Minkowski sums and Brownian exit times
- [1] School of Mathematical Sciences, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg, (Sweden)
Annales de la faculté des sciences de Toulouse Mathématiques (2007)
- Volume: 16, Issue: 1, page 37-47
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBorell, Christer. "Minkowski sums and Brownian exit times." Annales de la faculté des sciences de Toulouse Mathématiques 16.1 (2007): 37-47. <http://eudml.org/doc/10034>.
@article{Borell2007,
abstract = {If $C$ is a domain in R$^\{n\},$ the Brownian exit time of $C$ is denoted by $T_\{C\}.$ Given domains $C$ and $D$ in R$^\{n\}$ this paper gives an upper bound of the distribution function of $T_\{C+D\}$ when the distribution functions of $T_\{C\}$ and $T_\{D\}$ are known. The bound is sharp if $C$ and $D$ are parallel affine half-spaces. The paper also exhibits an extension of the Ehrhard inequality},
affiliation = {School of Mathematical Sciences, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg, (Sweden)},
author = {Borell, Christer},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Brownian motion; exit times; upper bounds},
language = {eng},
number = {1},
pages = {37-47},
publisher = {Université Paul Sabatier, Toulouse},
title = {Minkowski sums and Brownian exit times},
url = {http://eudml.org/doc/10034},
volume = {16},
year = {2007},
}
TY - JOUR
AU - Borell, Christer
TI - Minkowski sums and Brownian exit times
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 1
SP - 37
EP - 47
AB - If $C$ is a domain in R$^{n},$ the Brownian exit time of $C$ is denoted by $T_{C}.$ Given domains $C$ and $D$ in R$^{n}$ this paper gives an upper bound of the distribution function of $T_{C+D}$ when the distribution functions of $T_{C}$ and $T_{D}$ are known. The bound is sharp if $C$ and $D$ are parallel affine half-spaces. The paper also exhibits an extension of the Ehrhard inequality
LA - eng
KW - Brownian motion; exit times; upper bounds
UR - http://eudml.org/doc/10034
ER -
References
top- Borell (Ch.).— Greenian potentials and concavity, Math. Ann. 272, p. 155-160 (1985). Zbl0584.31003MR794098
- Borell (Ch.).— The Ehrhard inequality, C. R. Acad. Sci. Paris, Ser. I 337, p. 663-666 (2003). Zbl1031.60013MR2030108
- Carlen (E. A.), Kerce (C.).— On the cases of equality in Bobkov’s inequality and Gaussian rearrangement, Calc. Var. 13, p. 1-18 (2001). Zbl1009.49029MR1854254
- Ehrhard (A.).— Symétrisation dans l’espace de Gauss, Math. Scand. 53, p. 281-301 (1983). Zbl0542.60003MR745081
- Ehrhard (A.).— Eléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes. Annales de l’Institut Henri Poincaré 22, p. 149-168 (1986). Zbl0595.60020MR850753
- Karatzas (I.), Shreve (S. E.).— Brownian Motion and Stochastic Calculus. Second Edition, Springer-Verlag 1991. Zbl0734.60060MR1121940
- Landau (H. J.), Shepp (L. A.).— On the supremum of a Gaussian process, Sankhyā 32, ser A, p. 369-378 (1970). Zbl0218.60039MR286167
- Latała (R. A.).— On some inequalities for Gaussian measures. Proceedings of the ICM, 2, p. 813-822 (2002). Zbl1015.60011
- Sudakov (V. N.), Tsirelson (B. S.).— Extremal properties of half-spaces for spherically-invariant measures, Zapiski Nauchn, Seminarov LOMI 41, p. 14-24 (1974) (translated in J. Soviet Math. 9, p. 9-18 (1978)). Zbl0395.28007MR365680
- Yurinsky (V.).— Sums and Gaussian Vectors. Lecture Notes in Mathematics 1617. Springer-Verlag 1995. Zbl0846.60003MR1442713
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.