Wavelet techniques for pointwise regularity
- [1] Laboratoire d’Analyse et de Mathématiques Appliquées, Université Paris XII, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex (France).
Annales de la faculté des sciences de Toulouse Mathématiques (2006)
- Volume: 15, Issue: 1, page 3-33
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topJaffard, Stéphane. "Wavelet techniques for pointwise regularity." Annales de la faculté des sciences de Toulouse Mathématiques 15.1 (2006): 3-33. <http://eudml.org/doc/10037>.
@article{Jaffard2006,
abstract = {Let $E$ be a Banach (or quasi-Banach) space which is shift and scaling invariant (typically a homogeneous Besov or Sobolev space). We introduce a general definition of pointwise regularity associated with $E$, and denoted by $C^\alpha _E (x_0)$. We show how properties of $E$ are transferred into properties of $C^\alpha _E (x_0)$. Applications are given in multifractal analysis.},
affiliation = {Laboratoire d’Analyse et de Mathématiques Appliquées, Université Paris XII, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex (France).},
author = {Jaffard, Stéphane},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Banach space; quasi-Banach space; pointwise regularity; wavelet; multifractal analysis},
language = {eng},
number = {1},
pages = {3-33},
publisher = {Université Paul Sabatier, Toulouse},
title = {Wavelet techniques for pointwise regularity},
url = {http://eudml.org/doc/10037},
volume = {15},
year = {2006},
}
TY - JOUR
AU - Jaffard, Stéphane
TI - Wavelet techniques for pointwise regularity
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 1
SP - 3
EP - 33
AB - Let $E$ be a Banach (or quasi-Banach) space which is shift and scaling invariant (typically a homogeneous Besov or Sobolev space). We introduce a general definition of pointwise regularity associated with $E$, and denoted by $C^\alpha _E (x_0)$. We show how properties of $E$ are transferred into properties of $C^\alpha _E (x_0)$. Applications are given in multifractal analysis.
LA - eng
KW - Banach space; quasi-Banach space; pointwise regularity; wavelet; multifractal analysis
UR - http://eudml.org/doc/10037
ER -
References
top- A. Arneodo, B. Audit, N. Decoster, J.-F. Muzy, C. Vaillant, Wavelet-based multifractal formalism: Applications to DNA sequences, satellite images of the cloud structure and stock market data, The Science of Disasters (2002), 27-102, BundeA.A.
- F. Autin, Point de vue maxiset en estimation non paramétrique, (2004)
- B. Beauzamy, Introduction to Banach spaces and their geometry, 68 (1985), North-Holland Publishing Co., Amsterdam Zbl0585.46009MR889253
- A. Benassi, S. Cohen, J. Istas, Identifying the multifractional function of a Gaussian process, Stat. Proba. letters. 39 (1998), 337-345 Zbl0931.60022MR1646220
- A. Benassi, S. Jaffard, D. Roux, Elliptic Gaussian random processes, Rev. Mat. Iberoam. 13 (1997), 19-90 Zbl0880.60053MR1462329
- J.-M. Bony, Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Hyperbolic equations and related topics (1986), 11-49, Academic Press Zbl0669.35073MR925240
- G. Bourdaud, Réalisations des espaces de Besov homogènes, Arkiv för Mat. 26 (1988), 41-54 Zbl0661.46026MR948279
- H. Brezis, Analyse fonctionnelle, (1983), Masson Zbl0511.46001MR697382
- A. P. Caldéron, A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-227 Zbl0099.30103MR136849
- A. Cohen, W. Dahmen, I. Daubechies, R. DeVore, Harmonic analysis of the space BV, Rev. Mat. Iberoam. 19 (2003), 235-263 Zbl1044.42028MR1993422
- A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet methods for elliptic operator equations: Convergence rates, Math. Comput. 70 (2001), 27-75 Zbl0980.65130MR1803124
- S. Cohen, Liens entre densité spectrale et autosimilarité asymptotique dans certains modèles gaussiens
- D. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard, Wavelet shrinkage: Asymptopia?, J. R. Stat. Soc., Ser. B 57 (1995), 301-369 Zbl0827.62035MR1323344
- H. Feichtinger, G. Zimmermann, An exotic minimal Banach space of functions, Math. Nachr. 239-240 (2002), 42-61 Zbl1019.46025MR1905663
- M. Frazier, B. Jawerth, G. Weiss, Littlewood-Paley theory and the study of function spaces, 79 (1991), AMS Zbl0757.42006
- S. Jaffard, C. Melot, Wavelet analysis of fractal Boundaries, Part 1: Local regularity and Part 2: Multifractal formalism, Comm. Math. Phys. 258 (2005), 513-565 Zbl0760.42016MR1103613
- S. Jaffard, Y. Meyer, R. Ryan, Wavelets: Tools for Science and Technology, (2001), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA Zbl0761.65083MR1173180
- S. Jaffard, Y. Meyer, Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc. 123 (1996) Zbl0889.26004MR1347019
- S. Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients, Publications Matematiques 35 (1991), 155-168 Zbl0917.28006MR1649544
- S. Jaffard, Wavelet methods for fast resolution of elliptic problems, SIAM J. Numer. Anal. 29 (1992), 965-986 Zbl0930.42021MR1633152
- S. Jaffard, Local behavior of Riemann’s function, Harmonic analysis and operator theory (Caracas, 1994) 189 (1995), 287-307, Amer. Math. Soc., Providence, RI Zbl1093.28005MR2112122
- S. Jaffard, Oscillation spaces: Properties and applications to fractal and multifractal functions, J. Math. Phys. 39 (1998), 4129-4141 Zbl1074.42006MR2110377
- S. Jaffard, Sur la dimension de boîte des graphes, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 555-560 Zbl1076.42024MR2105390
- S. Jaffard, Pointwise regularity criteria, C.R.A.S., Série 1 339 (2004), 757-762 Zbl1080.28005MR2172009
- S. Jaffard, Wavelet techniques in multifractal analysis, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2 72 (2004), 91-151, LapidusM.M., Providence, RI Zbl0873.42019MR1342019
- S. Jaffard, Beyond Besov spaces Part 2: Oscillation spaces, Constr. Approx. 21 (2005), 29-61 Zbl0970.42020MR1827998
- S. Mallat, A Wavelet Tour of Signal Processing, (1998), Academic Press Zbl0937.94001MR1614527
- Y. Meyer, H. Xu, Wavelet analysis and chirps, Appl. Comput. Harmon. Anal. 4 (1997), 366-379 Zbl0960.94006
- Y. Meyer, La minimalité de l’espace de Besov et la continuité des opérateurs définis par des intégrales singulières, Monografias de Matematicas (1986), Univ. Autonoma de Madrid Zbl0694.41037MR1085487
- Y. Meyer, Ondelettes et opérateurs, (1990), Hermann Zbl0852.35005MR1347026
- Y. Meyer, Wavelet analysis, local Fourier analysis and 2-microlocalization, Harmonic Analysis and Operator Theory (Caracas, 1994) 189 (1995), 393-401, Amer. Math. Soc., Providence, RI Zbl0893.42015MR1483896
- Y. Meyer, Wavelets, Vibrations and Scalings, 9 (1998), American Mathematical Society Zbl0960.94006MR1474095
- S. Moritoh, T. Yamada, Two-microlocal Besov spaces and wavelets, Rev. Mat. Iberoamericana 20 (2004), 277-283 Zbl1052.46025MR2076781
- G. Parisi, U. Frisch, On the singularity spectrum of fully developped turbulence, Turbulence and predictability in geophysical fluid dynamics (1985), 84-87, North Holland
- I. Singer, Bases in Banach spaces 1, (1970), Springer-Verlag Zbl0198.16601MR298399
- H. Triebel, Wavelet frames for distributions; local and pointwise regularity, Studia Math. 154 (2003), 59-88 Zbl1047.46027MR1949049
- B. Vedel, Règlement de la divergence infra-rouge dans des bases d’ondelettes adaptées, (2004)
- P. Wojtaszczyk, Banach spaces for analysts, (1991), Cambridge Univ. Press Zbl0724.46012MR1144277
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.