Wavelet techniques for pointwise regularity

Stéphane Jaffard[1]

  • [1] Laboratoire d’Analyse et de Mathématiques Appliquées, Université Paris XII, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex (France).

Annales de la faculté des sciences de Toulouse Mathématiques (2006)

  • Volume: 15, Issue: 1, page 3-33
  • ISSN: 0240-2963

Abstract

top
Let E be a Banach (or quasi-Banach) space which is shift and scaling invariant (typically a homogeneous Besov or Sobolev space). We introduce a general definition of pointwise regularity associated with E , and denoted by C E α ( x 0 ) . We show how properties of E are transferred into properties of C E α ( x 0 ) . Applications are given in multifractal analysis.

How to cite

top

Jaffard, Stéphane. "Wavelet techniques for pointwise regularity." Annales de la faculté des sciences de Toulouse Mathématiques 15.1 (2006): 3-33. <http://eudml.org/doc/10037>.

@article{Jaffard2006,
abstract = {Let $E$ be a Banach (or quasi-Banach) space which is shift and scaling invariant (typically a homogeneous Besov or Sobolev space). We introduce a general definition of pointwise regularity associated with $E$, and denoted by $C^\alpha _E (x_0)$. We show how properties of $E$ are transferred into properties of $C^\alpha _E (x_0)$. Applications are given in multifractal analysis.},
affiliation = {Laboratoire d’Analyse et de Mathématiques Appliquées, Université Paris XII, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex (France).},
author = {Jaffard, Stéphane},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Banach space; quasi-Banach space; pointwise regularity; wavelet; multifractal analysis},
language = {eng},
number = {1},
pages = {3-33},
publisher = {Université Paul Sabatier, Toulouse},
title = {Wavelet techniques for pointwise regularity},
url = {http://eudml.org/doc/10037},
volume = {15},
year = {2006},
}

TY - JOUR
AU - Jaffard, Stéphane
TI - Wavelet techniques for pointwise regularity
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 1
SP - 3
EP - 33
AB - Let $E$ be a Banach (or quasi-Banach) space which is shift and scaling invariant (typically a homogeneous Besov or Sobolev space). We introduce a general definition of pointwise regularity associated with $E$, and denoted by $C^\alpha _E (x_0)$. We show how properties of $E$ are transferred into properties of $C^\alpha _E (x_0)$. Applications are given in multifractal analysis.
LA - eng
KW - Banach space; quasi-Banach space; pointwise regularity; wavelet; multifractal analysis
UR - http://eudml.org/doc/10037
ER -

References

top
  1. A. Arneodo, B. Audit, N. Decoster, J.-F. Muzy, C. Vaillant, Wavelet-based multifractal formalism: Applications to DNA sequences, satellite images of the cloud structure and stock market data, The Science of Disasters (2002), 27-102, BundeA.A. 
  2. F. Autin, Point de vue maxiset en estimation non paramétrique, (2004) 
  3. B. Beauzamy, Introduction to Banach spaces and their geometry, 68 (1985), North-Holland Publishing Co., Amsterdam Zbl0585.46009MR889253
  4. A. Benassi, S. Cohen, J. Istas, Identifying the multifractional function of a Gaussian process, Stat. Proba. letters. 39 (1998), 337-345 Zbl0931.60022MR1646220
  5. A. Benassi, S. Jaffard, D. Roux, Elliptic Gaussian random processes, Rev. Mat. Iberoam. 13 (1997), 19-90 Zbl0880.60053MR1462329
  6. J.-M. Bony, Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Hyperbolic equations and related topics (1986), 11-49, Academic Press Zbl0669.35073MR925240
  7. G. Bourdaud, Réalisations des espaces de Besov homogènes, Arkiv för Mat. 26 (1988), 41-54 Zbl0661.46026MR948279
  8. H. Brezis, Analyse fonctionnelle, (1983), Masson Zbl0511.46001MR697382
  9. A. P. Caldéron, A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-227 Zbl0099.30103MR136849
  10. A. Cohen, W. Dahmen, I. Daubechies, R. DeVore, Harmonic analysis of the space BV, Rev. Mat. Iberoam. 19 (2003), 235-263 Zbl1044.42028MR1993422
  11. A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet methods for elliptic operator equations: Convergence rates, Math. Comput. 70 (2001), 27-75 Zbl0980.65130MR1803124
  12. S. Cohen, Liens entre densité spectrale et autosimilarité asymptotique dans certains modèles gaussiens 
  13. D. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard, Wavelet shrinkage: Asymptopia?, J. R. Stat. Soc., Ser. B 57 (1995), 301-369 Zbl0827.62035MR1323344
  14. H. Feichtinger, G. Zimmermann, An exotic minimal Banach space of functions, Math. Nachr. 239-240 (2002), 42-61 Zbl1019.46025MR1905663
  15. M. Frazier, B. Jawerth, G. Weiss, Littlewood-Paley theory and the study of function spaces, 79 (1991), AMS Zbl0757.42006
  16. S. Jaffard, C. Melot, Wavelet analysis of fractal Boundaries, Part 1: Local regularity and Part 2: Multifractal formalism, Comm. Math. Phys. 258 (2005), 513-565 Zbl0760.42016MR1103613
  17. S. Jaffard, Y. Meyer, R. Ryan, Wavelets: Tools for Science and Technology, (2001), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA Zbl0761.65083MR1173180
  18. S. Jaffard, Y. Meyer, Wavelet methods for pointwise regularity and local oscillations of functions, Mem. Amer. Math. Soc. 123 (1996) Zbl0889.26004MR1347019
  19. S. Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients, Publications Matematiques 35 (1991), 155-168 Zbl0917.28006MR1649544
  20. S. Jaffard, Wavelet methods for fast resolution of elliptic problems, SIAM J. Numer. Anal. 29 (1992), 965-986 Zbl0930.42021MR1633152
  21. S. Jaffard, Local behavior of Riemann’s function, Harmonic analysis and operator theory (Caracas, 1994) 189 (1995), 287-307, Amer. Math. Soc., Providence, RI Zbl1093.28005MR2112122
  22. S. Jaffard, Oscillation spaces: Properties and applications to fractal and multifractal functions, J. Math. Phys. 39 (1998), 4129-4141 Zbl1074.42006MR2110377
  23. S. Jaffard, Sur la dimension de boîte des graphes, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 555-560 Zbl1076.42024MR2105390
  24. S. Jaffard, Pointwise regularity criteria, C.R.A.S., Série 1 339 (2004), 757-762 Zbl1080.28005MR2172009
  25. S. Jaffard, Wavelet techniques in multifractal analysis, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2 72 (2004), 91-151, LapidusM.M., Providence, RI Zbl0873.42019MR1342019
  26. S. Jaffard, Beyond Besov spaces Part 2: Oscillation spaces, Constr. Approx. 21 (2005), 29-61 Zbl0970.42020MR1827998
  27. S. Mallat, A Wavelet Tour of Signal Processing, (1998), Academic Press Zbl0937.94001MR1614527
  28. Y. Meyer, H. Xu, Wavelet analysis and chirps, Appl. Comput. Harmon. Anal. 4 (1997), 366-379 Zbl0960.94006
  29. Y. Meyer, La minimalité de l’espace de Besov B 1 0 , 1 et la continuité des opérateurs définis par des intégrales singulières, Monografias de Matematicas (1986), Univ. Autonoma de Madrid Zbl0694.41037MR1085487
  30. Y. Meyer, Ondelettes et opérateurs, (1990), Hermann Zbl0852.35005MR1347026
  31. Y. Meyer, Wavelet analysis, local Fourier analysis and 2-microlocalization, Harmonic Analysis and Operator Theory (Caracas, 1994) 189 (1995), 393-401, Amer. Math. Soc., Providence, RI Zbl0893.42015MR1483896
  32. Y. Meyer, Wavelets, Vibrations and Scalings, 9 (1998), American Mathematical Society Zbl0960.94006MR1474095
  33. S. Moritoh, T. Yamada, Two-microlocal Besov spaces and wavelets, Rev. Mat. Iberoamericana 20 (2004), 277-283 Zbl1052.46025MR2076781
  34. G. Parisi, U. Frisch, On the singularity spectrum of fully developped turbulence, Turbulence and predictability in geophysical fluid dynamics (1985), 84-87, North Holland 
  35. I. Singer, Bases in Banach spaces 1, (1970), Springer-Verlag Zbl0198.16601MR298399
  36. H. Triebel, Wavelet frames for distributions; local and pointwise regularity, Studia Math. 154 (2003), 59-88 Zbl1047.46027MR1949049
  37. B. Vedel, Règlement de la divergence infra-rouge dans des bases d’ondelettes adaptées, (2004) 
  38. P. Wojtaszczyk, Banach spaces for analysts, (1991), Cambridge Univ. Press Zbl0724.46012MR1144277

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.