Special Lagrangian submanifolds in the complex sphere
Annales de la faculté des sciences de Toulouse Mathématiques (2007)
- Volume: 16, Issue: 2, page 215-227
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topAnciaux, Henri. "Special Lagrangian submanifolds in the complex sphere." Annales de la faculté des sciences de Toulouse Mathématiques 16.2 (2007): 215-227. <http://eudml.org/doc/10042>.
@article{Anciaux2007,
abstract = {We construct a family of Lagrangian submanifolds in the complex sphere which are foliated by $(n-1)$-dimensional spheres. Among them we find those which are special Lagrangian with respect to the Calabi-Yau structure induced by the Stenzel metric.},
author = {Anciaux, Henri},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {special Lagrangian submanifolds; branes; string theory; mirror symmetry},
language = {eng},
number = {2},
pages = {215-227},
publisher = {Université Paul Sabatier, Toulouse},
title = {Special Lagrangian submanifolds in the complex sphere},
url = {http://eudml.org/doc/10042},
volume = {16},
year = {2007},
}
TY - JOUR
AU - Anciaux, Henri
TI - Special Lagrangian submanifolds in the complex sphere
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 2
SP - 215
EP - 227
AB - We construct a family of Lagrangian submanifolds in the complex sphere which are foliated by $(n-1)$-dimensional spheres. Among them we find those which are special Lagrangian with respect to the Calabi-Yau structure induced by the Stenzel metric.
LA - eng
KW - special Lagrangian submanifolds; branes; string theory; mirror symmetry
UR - http://eudml.org/doc/10042
ER -
References
top- Audin (M.).— Lagrangian submanifolds, in Symplectic geometry of integrable Hamiltonian systems, M. Audin, A. Cannas da Silva, E. Lerman, Advanced courses in Mathematics CRM Barcelona, Birkhäuser (2003). Zbl1088.53053MR2000744
- Bryant (R.).— Some examples of special Lagrangian tori, Adv. Theor. Math. Phys. 3, no. 1, p. 83-90 (1999). Zbl0980.32006MR1704218
- Cvetič (M.), Gibbons (G. W.), Lü (H.) & Pope (C. N.).— Ricci-flat metrics, harmonic forms and brane resolutions, Comm. Math. Phys. 232, no. 3, p. 457-500 (2003). Zbl1027.53044MR1952474
- Castro (I.), Montealegre (C. R.) & Urbano (F.).— Minimal Lagrangian submanifolds in the complex hyperbolic space, Illinois J. Math. 46, no. 3, p. 695-721 (2002). Zbl1032.53052MR1951236
- Castro (I.), Urbano (F.).— On a Minimal Lagrangian Submanifold of Foliated by Spheres, Mich. Math. J., 46, p. 71-82 (1999). Zbl0974.53059MR1682888
- Castro (I.), Urbano (F.).— On a new construction of special Lagrangian immersions in complex Euclidean space, Q. J. Math. 55, no. 3, p. 253-265 (2004). Zbl1086.53074MR2082092
- Haskins (M.).— Special Lagrangian cones, Amer. J. Math. 126, no. 4, p. 845-871 (2004). Zbl1074.53067MR2075484
- Harvey (R.), Lawson (H. B.).— Calibrated geometries, Acta Mathematica, 148, p. 47-157 (1982). Zbl0584.53021MR666108
- Joyce (D.).— -invariant special Lagrangian 3-folds in and special Lagrangian fibrations. Turkish J. Math. 27, no. 1, p. 99-114 (2003). Zbl1040.53091MR1975333
- Joyce (D.).— Riemannian holonomy groups and calibrated geometry, in Calabi-Yau manifolds and related geometries. Lectures from the Summer School held in Nordfjordeid, June 2001. Universitext. Springer-Verlag, Berlin (2003). Zbl1016.53041MR1963560
- Oh (Y.-G.).— Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds, Invent. Math. 101, p. 501-519 (1990). Zbl0721.53060MR1062973
- Stenzel (M.).— Ricci-flat metrics on the complexification of a compact rank one symmetric space, Manuscripta Math. 80, no. 2, p. 151-163 (1993). Zbl0811.53049MR1233478
- Strominger (A.), Yau (S.-T.) & Zaslow (E.).— Mirror symmetry is T-duality, Nuclear Physics, B479, hep-th/9606040 (1996). Zbl0896.14024MR1429831
- Yau (S.-T.).— On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equations I, Comm. Pure Appl. Math. 31, p. 339-411 (1978). Zbl0369.53059MR480350
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.