Reconstruction of algebraic sets from dynamic moments
Gabriela Putinar[1]; Mihai Putinar[1]
- [1] Department of Mathematics, University of California, Santa Barbara, CA 93106, U.S.A.
Annales de la faculté des sciences de Toulouse Mathématiques (2007)
- Volume: 16, Issue: 3, page 647-664
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topPutinar, Gabriela, and Putinar, Mihai. "Reconstruction of algebraic sets from dynamic moments." Annales de la faculté des sciences de Toulouse Mathématiques 16.3 (2007): 647-664. <http://eudml.org/doc/10066>.
@article{Putinar2007,
abstract = {We discuss an exact reconstruction algorithm for time expanding semi-algebraic sets given by a single polynomial inequality. The theoretical motivation comes from the classical $L$-problem of moments, while some possible applications to 2D fluid moving boundaries are sketched. The proofs rely on an adapted co-area theorem and a Hankel form minimization.},
affiliation = {Department of Mathematics, University of California, Santa Barbara, CA 93106, U.S.A.; Department of Mathematics, University of California, Santa Barbara, CA 93106, U.S.A.},
author = {Putinar, Gabriela, Putinar, Mihai},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {3},
pages = {647-664},
publisher = {Université Paul Sabatier, Toulouse},
title = {Reconstruction of algebraic sets from dynamic moments},
url = {http://eudml.org/doc/10066},
volume = {16},
year = {2007},
}
TY - JOUR
AU - Putinar, Gabriela
AU - Putinar, Mihai
TI - Reconstruction of algebraic sets from dynamic moments
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 3
SP - 647
EP - 664
AB - We discuss an exact reconstruction algorithm for time expanding semi-algebraic sets given by a single polynomial inequality. The theoretical motivation comes from the classical $L$-problem of moments, while some possible applications to 2D fluid moving boundaries are sketched. The proofs rely on an adapted co-area theorem and a Hankel form minimization.
LA - eng
UR - http://eudml.org/doc/10066
ER -
References
top- Akhiezer (N. I.), Krein (M.).— Some questions in the theory of moments. Translations of Mathematical Monographs, Vol. 2 American Mathematical Society, Providence, R.I. (1962). Zbl0117.32702MR167806
- Berg (C.).— The multidimensional moment problem and semigroups. Moments in mathematics, 110-124, Proc. Sympos. Appl. Math., 37, Amer. Math. Soc., Providence, RI (1987). Zbl0636.44007MR921086
- Bochnak (J.), Coste (M.), Roy (M.-F.).— Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3)36. Springer-Verlag, Berlin (1998). Zbl0912.14023MR1659509
- Elad (M.), Milanfar (P.), Golub (G. H.).— Shape from moments- an estimation theory perspective. IEEE Trans. Signal Process. 52, no. 7, p. 1814-1829 (2004). MR2087688
- Fuglede (B.).— The multidimensional moment problem. Expositiones Math. 1, no. 1, p. 47-65 (1983). Zbl0514.44006MR693807
- Golub (G. H.), Milanfar (P.), Varah (J.).— A stable numerical method for inverting shape from moments. SIAM J. Sci. Comput. 21, no. 4, p. 1222-1243 (1999/00). Zbl0956.65030MR1740393
- Golub (G. H.), Gustafsson (B.), Milanfar (P.), Putinar (M.), Varah (J.).— Shape reconstruction from moments: theory, algorithms, and applications, SPIE Proceedings vol. 4116 (2000), Advanced Signal Processing, Algorithms, Architecture, and Implementations X (Franklin T.Luk, ed.), p. 406-416.
- Gustafsson (B.), He (C.), Milanfar (P.), Putinar (M.).— Reconstructing planar domains from their moments. Inverse Problems 16, no. 4, p. 1053-1070 (2000). Zbl0959.44010MR1776483
- Gustafsson (B.), Putinar (M.).— Linear analysis of quadrature domains. II. Israel J. Math. 119, p. 187-216 (2000). Zbl0968.30016MR1802654
- Gustafsson (B.), Vasiliev (A.).— Conformal and Potential Analysis in Hele-Shaw Cells, Birkhauser, Basel (2006). Zbl1122.76002MR2245542
- Karlin (S.), Studden (W. J.).— Tchebycheff systems: With applications in analysis and statistics. Pure and Applied Mathematics, Vol. XV Interscience Publishers John Wiley & Sons (1966). Zbl0153.38902MR204922
- Krein (M. G.), Nudelman (A. A.).— The Markov moment problem and extremal problems. Translations of Mathematical Monographs, Vol. 50. A. M. S., Providence, R.I. (1977). Zbl0361.42014
- Putinar (G.).— Asymptotics for extremal moments and monodromy of complex singularities. preprint UCSB, no. 2006-48.
- Putinar (G.).— Semi-local micro-differential theory and computations of moments for semi-algebraic domains. preprint UCSB, no. 2006-46.
- Putinar (M.).— Extremal solutions of the two-dimensional -problem of moments. II. J. Approx. Theory 92, no. 1, p. 38-58 (1998). Zbl0910.47011MR1492857
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.