-estimates for the -equation and Witten’s proof of the Morse inequalities
- [1] Department of Mathematics, Chalmers University of Technology and the University of Göteborg, S-412 96 Göteborg, Sweden
Annales de la faculté des sciences de Toulouse Mathématiques (2007)
- Volume: 16, Issue: 4, page 773-797
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Berndtsson (B.).— Bergman kernels related to Hermitian line bundles over compact complex manifolds, Contemporary Mathematics, AMS, Volume 332, 2003. Zbl1038.32003MR2016088
- Berman (R.).— Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248, no. 2, p. 325–344 (2004). Zbl1066.32002MR2088931
- Brascamp (H.J.), Lieb (E.H.).— On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation., J. Functional Analysis 22, no. 4, p.366–389 (1976). Zbl0334.26009MR450480
- Demailly (J.-P.).— Holomorphic Morse inequalities., Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, p.93–114 (1989). Zbl0755.32008MR1128538
- Helffer (B.).— Semi-classical analysis for the Schrödinger operator and applications., Lecture Notes in Mathematics (1336). Springer-Verlag, Berlin (1988). vi+107 pp. ISBN 3-540-50076-6. Zbl0647.35002MR960278
- Hörmander (L.).— An introduction to complex analysis in several variables. Third edition., North-Holland Mathematical Library, 7. North-Holland Publishing Co., Amsterdam-New York, 1990. Zbl0271.32001MR1045639
- Warner (F.).— Foundations of differentiable manifolds and Lie groups, pringer-Verlag, New York-Berlin, 1983. Zbl0516.58001MR722297
- Witten (E.).— Supersymmetry and Morse theory., J. Differential Geom. 17 (1982), no. 4, p. 661–692 (1983). Zbl0499.53056MR683171