Limit trees and generic discriminants of minimal surface singularities

Eric Akéké[1]

  • [1] Centre de Mathématiques et d’Informatique, 39, rue F. Joliot Curie 13453 Marseille cedex 13 (France)

Annales de la faculté des sciences de Toulouse Mathématiques (2008)

  • Volume: 17, Issue: 1, page 37-51
  • ISSN: 0240-2963

Abstract

top
According to R. Bondil the dual graph of the minimal resolution of a minimal normal surface singularity determines the generic discriminant of that singularity. In this article we give with combinatorial arguments the link between the limit trees and the generic discriminants of minimal normal surface singularities. The weighted limit trees of a minimal surface singularity determine the generic discriminant of that singularity.

How to cite

top

Akéké, Eric. "Limit trees and generic discriminants of minimal surface singularities." Annales de la faculté des sciences de Toulouse Mathématiques 17.1 (2008): 37-51. <http://eudml.org/doc/10080>.

@article{Akéké2008,
abstract = {According to R. Bondil the dual graph of the minimal resolution of a minimal normal surface singularity determines the generic discriminant of that singularity. In this article we give with combinatorial arguments the link between the limit trees and the generic discriminants of minimal normal surface singularities. The weighted limit trees of a minimal surface singularity determine the generic discriminant of that singularity.},
affiliation = {Centre de Mathématiques et d’Informatique, 39, rue F. Joliot Curie 13453 Marseille cedex 13 (France)},
author = {Akéké, Eric},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {minimal singularity; generic discriminant; limit tree},
language = {eng},
month = {6},
number = {1},
pages = {37-51},
publisher = {Université Paul Sabatier, Toulouse},
title = {Limit trees and generic discriminants of minimal surface singularities},
url = {http://eudml.org/doc/10080},
volume = {17},
year = {2008},
}

TY - JOUR
AU - Akéké, Eric
TI - Limit trees and generic discriminants of minimal surface singularities
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 1
SP - 37
EP - 51
AB - According to R. Bondil the dual graph of the minimal resolution of a minimal normal surface singularity determines the generic discriminant of that singularity. In this article we give with combinatorial arguments the link between the limit trees and the generic discriminants of minimal normal surface singularities. The weighted limit trees of a minimal surface singularity determine the generic discriminant of that singularity.
LA - eng
KW - minimal singularity; generic discriminant; limit tree
UR - http://eudml.org/doc/10080
ER -

References

top
  1. Akéké (E.D.).— Classification des singularités minimales de surfaces normales par les discriminants génériques, Université de Provence, Marseille (2005). 
  2. Artin (M.).— On isolated rational singularities of surfaces, Amer. J. Math, 88, p.129-136 (1996). Zbl0142.18602MR199191
  3. Bondil (R.).— Discriminant of a generic projection of a minimal normal surface singularity, C. R. Acad. Sc. Paris, 337 (2003). Zbl1053.14040MR2001134
  4. Bondil (R.).— Fine polar invariants of minimal singularities of surfaces, preprint, Arxiv: AG/0401434, (2004). 
  5. Briançon (J.), Galligo (A.) and Granger (M.).— Déformations équisingu-lières des germes de courbes gauches réduites, Mém. Soc. Math. France, 69 (1980/1981). Zbl0447.14004MR607805
  6. Brieskorn (E.) and Körrer (H.).— Plane algebraic curves, Birkäuser Verlag, Bessel (1986). Zbl0588.14019MR886476
  7. De Jong (T.) and Van Straten (D.).— On the deformation theory of rational surface singularities with reduced fundamental cycle, J. Algebraic Geometry, 3, p. 117-172 (1994). Zbl0822.14004MR1242008
  8. Kollár (J.).— Toward moduli of singular varieties, Comp. Math., 56, p. 369-398 (1985). Zbl0666.14003MR814554
  9. Lê (D.T.) and Tosun (M.).— Combinatorics of rational surface singularities, Comment. Math. Helvetici, 79 (2004). Zbl1060.32016MR2081727
  10. Spivakovsky (M.).— Sandwiched singularities and desingularisation of surfaces by normalized Nash transformations, Ann. Math., 131, p. 411-491 (1990). Zbl0719.14005MR1053487
  11. Teissier (N.).— Variétés polaires II, Multiplicités polaires, Sections planes et conditions de Whitney, Algebraic Geometry, 961, Lecture notes in math., p. 314-491, La Rabida 1981, Springer-Verlag (1982). Zbl0585.14008MR708342
  12. Zariski (O.).— Studies in equisingularity I, equivalent singularities of plane algebroid curves, Amer. J. Math., 87, p. 507-536 (1965). Zbl0132.41601MR177985
  13. Zariski (O.).— General theory of saturation and of satured local rings, Amer. J. Math., 93 (1971). Zbl0226.13013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.