Continuity of the bending map

Cyril Lecuire[1]

  • [1] Laboratoire Emile Picard, Université Paul Sabatier 118 route de Narbonne, 31062 Toulouse Cedex 9

Annales de la faculté des sciences de Toulouse Mathématiques (2008)

  • Volume: 17, Issue: 1, page 93-119
  • ISSN: 0240-2963

Abstract

top
The bending map of a hyperbolic 3 -manifold maps a convex cocompact hyperbolic metric on a 3 -manifold with boundary to its bending measured geodesic lamination. As proved in [KeS] and [KaT], this map is continuous. In the present paper we study the extension of this map to the space of geometrically finite hyperbolic metrics. We introduce a relationship on the space of measured geodesic laminations and show that the quotient map obtained from the bending map is continuous.

How to cite

top

Lecuire, Cyril. "Continuity of the bending map." Annales de la faculté des sciences de Toulouse Mathématiques 17.1 (2008): 93-119. <http://eudml.org/doc/10084>.

@article{Lecuire2008,
abstract = {The bending map of a hyperbolic $3$-manifold maps a convex cocompact hyperbolic metric on a $3$-manifold with boundary to its bending measured geodesic lamination. As proved in [KeS] and [KaT], this map is continuous. In the present paper we study the extension of this map to the space of geometrically finite hyperbolic metrics. We introduce a relationship on the space of measured geodesic laminations and show that the quotient map obtained from the bending map is continuous.},
affiliation = {Laboratoire Emile Picard, Université Paul Sabatier 118 route de Narbonne, 31062 Toulouse Cedex 9},
author = {Lecuire, Cyril},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {hyperbolic manifold; bending map; core; geodesic lamination; complete hyperbolic metric; convex compact},
language = {eng},
month = {6},
number = {1},
pages = {93-119},
publisher = {Université Paul Sabatier, Toulouse},
title = {Continuity of the bending map},
url = {http://eudml.org/doc/10084},
volume = {17},
year = {2008},
}

TY - JOUR
AU - Lecuire, Cyril
TI - Continuity of the bending map
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 1
SP - 93
EP - 119
AB - The bending map of a hyperbolic $3$-manifold maps a convex cocompact hyperbolic metric on a $3$-manifold with boundary to its bending measured geodesic lamination. As proved in [KeS] and [KaT], this map is continuous. In the present paper we study the extension of this map to the space of geometrically finite hyperbolic metrics. We introduce a relationship on the space of measured geodesic laminations and show that the quotient map obtained from the bending map is continuous.
LA - eng
KW - hyperbolic manifold; bending map; core; geodesic lamination; complete hyperbolic metric; convex compact
UR - http://eudml.org/doc/10084
ER -

References

top
  1. Anderson (J.W.) and Canary (R.D.).— Algebraic limits of Kleinian groups which rearrange the pages of a book, Invent. Math. 126, 205-214 (1996). Zbl0874.57012MR1411128
  2. Benedetti (R.) and Petronio (C.).— Lectures on hyperbolic geometry, (1992). Zbl0768.51018MR1219310
  3. Birman (J. S.) and Series (C.).— Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology 24, no. 2, 217-225 (1985). Zbl0568.57006MR793185
  4. Bonahon (F.).— Bouts des variétés hyperboliques de dimension 3 , Ann. of Math. (2) 124, 71-158 (1986). Zbl0671.57008MR847953
  5. Bonahon (F.).— Variations of the boundary of 3-dimensionnal hyperbolic convex cores, J. Diff. Geom. 50, 1-24 (1998). Zbl0937.53020MR1678469
  6. Bonahon (F.).— Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. 5, 233-297 (1996). Zbl0880.57005
  7. Bonahon (F.) and Otal (J.-P.).— Laminations mesurées de plissage des variétés hyperboliques de dimension 3, Ann. Math. (2) 160, No.3, 1013-1055 (2005). Zbl1083.57023MR2144972
  8. Bridgeman (M.).— Average bending of convex pleated planes in hyperbolic three-space, Invent. Math. 132, 381–391 (1998). Zbl0912.30028MR1621436
  9. Canary (R.D.), Epstein (D.B.A.) and Green (P.).— Notes on notes of Thurston, Analytical and Geometrical Aspects of hyperbolic Space, 3-92 (1987). Zbl0612.57009MR903850
  10. Epstein (D.B.A.) and Marden (A.).— Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and Geometric Aspects of Hyperbolic Space, 113-253 (1987). Zbl0612.57010MR903852
  11. Gabai (D.).— On the geometric and topological rigidity of hyperbolic 3 -manifolds, J. Amer. Math. Soc. 10 , 37-74 (1997). Zbl0870.57014MR1354958
  12. Jorgensen (T.).— On discrete groups of Möbius transformations, Amer. J. Math. 98, 739-749 (1976). Zbl0336.30007MR427627
  13. Kamishima (Y.), Tan (S. P.).— Deformation spaces on geometric structures, Aspects of low-dimensional manifolds, Adv. Stud. Pure Math. 20, 263-299 (1992). Zbl0798.53030MR1208313
  14. Keen (L.) and Series (C.).— Continuity of convex hull boundaries, Pac. J. Math. 127, 457-519 (1988). Zbl0838.30043
  15. Lecuire (C.).— Plissage des variété hyperboliques de dimension 3, Inventiones Mathematicae 164, no. 1, 85-141 (2006). Zbl1097.57017MR2207784
  16. Lecuire (C.).— Bending map and strong convergence, preprint. 
  17. Otal (J.-P.).— Sur la dégénérescence des groupes de Schottky, Duke Math. J. 74, 777-792 (1994). Zbl0828.57008MR1277954
  18. Otal (J.-P.).— Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235 (1996). Zbl0855.57003
  19. Series (C.).— Quasifuchsian groups with small bending, Warwick preprint (2002). 
  20. Taylor (E.).— Geometric finiteness and the convergence of Kleinian groups, Com. Anal. Geom. 5, 497-533 (1997). Zbl0896.20033MR1487726
  21. Thurston (W.P.).— The topology and geometry of 3-manifolds, Notes de cours, Université de Princeton (1976-79). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.