Continuity of the bending map
- [1] Laboratoire Emile Picard, Université Paul Sabatier 118 route de Narbonne, 31062 Toulouse Cedex 9
Annales de la faculté des sciences de Toulouse Mathématiques (2008)
- Volume: 17, Issue: 1, page 93-119
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topLecuire, Cyril. "Continuity of the bending map." Annales de la faculté des sciences de Toulouse Mathématiques 17.1 (2008): 93-119. <http://eudml.org/doc/10084>.
@article{Lecuire2008,
abstract = {The bending map of a hyperbolic $3$-manifold maps a convex cocompact hyperbolic metric on a $3$-manifold with boundary to its bending measured geodesic lamination. As proved in [KeS] and [KaT], this map is continuous. In the present paper we study the extension of this map to the space of geometrically finite hyperbolic metrics. We introduce a relationship on the space of measured geodesic laminations and show that the quotient map obtained from the bending map is continuous.},
affiliation = {Laboratoire Emile Picard, Université Paul Sabatier 118 route de Narbonne, 31062 Toulouse Cedex 9},
author = {Lecuire, Cyril},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {hyperbolic manifold; bending map; core; geodesic lamination; complete hyperbolic metric; convex compact},
language = {eng},
month = {6},
number = {1},
pages = {93-119},
publisher = {Université Paul Sabatier, Toulouse},
title = {Continuity of the bending map},
url = {http://eudml.org/doc/10084},
volume = {17},
year = {2008},
}
TY - JOUR
AU - Lecuire, Cyril
TI - Continuity of the bending map
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 1
SP - 93
EP - 119
AB - The bending map of a hyperbolic $3$-manifold maps a convex cocompact hyperbolic metric on a $3$-manifold with boundary to its bending measured geodesic lamination. As proved in [KeS] and [KaT], this map is continuous. In the present paper we study the extension of this map to the space of geometrically finite hyperbolic metrics. We introduce a relationship on the space of measured geodesic laminations and show that the quotient map obtained from the bending map is continuous.
LA - eng
KW - hyperbolic manifold; bending map; core; geodesic lamination; complete hyperbolic metric; convex compact
UR - http://eudml.org/doc/10084
ER -
References
top- Anderson (J.W.) and Canary (R.D.).— Algebraic limits of Kleinian groups which rearrange the pages of a book, Invent. Math. 126, 205-214 (1996). Zbl0874.57012MR1411128
- Benedetti (R.) and Petronio (C.).— Lectures on hyperbolic geometry, (1992). Zbl0768.51018MR1219310
- Birman (J. S.) and Series (C.).— Geodesics with bounded intersection number on surfaces are sparsely distributed, Topology 24, no. 2, 217-225 (1985). Zbl0568.57006MR793185
- Bonahon (F.).— Bouts des variétés hyperboliques de dimension , Ann. of Math. (2) 124, 71-158 (1986). Zbl0671.57008MR847953
- Bonahon (F.).— Variations of the boundary of 3-dimensionnal hyperbolic convex cores, J. Diff. Geom. 50, 1-24 (1998). Zbl0937.53020MR1678469
- Bonahon (F.).— Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. 5, 233-297 (1996). Zbl0880.57005
- Bonahon (F.) and Otal (J.-P.).— Laminations mesurées de plissage des variétés hyperboliques de dimension 3, Ann. Math. (2) 160, No.3, 1013-1055 (2005). Zbl1083.57023MR2144972
- Bridgeman (M.).— Average bending of convex pleated planes in hyperbolic three-space, Invent. Math. 132, 381–391 (1998). Zbl0912.30028MR1621436
- Canary (R.D.), Epstein (D.B.A.) and Green (P.).— Notes on notes of Thurston, Analytical and Geometrical Aspects of hyperbolic Space, 3-92 (1987). Zbl0612.57009MR903850
- Epstein (D.B.A.) and Marden (A.).— Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and Geometric Aspects of Hyperbolic Space, 113-253 (1987). Zbl0612.57010MR903852
- Gabai (D.).— On the geometric and topological rigidity of hyperbolic -manifolds, J. Amer. Math. Soc. 10 , 37-74 (1997). Zbl0870.57014MR1354958
- Jorgensen (T.).— On discrete groups of Möbius transformations, Amer. J. Math. 98, 739-749 (1976). Zbl0336.30007MR427627
- Kamishima (Y.), Tan (S. P.).— Deformation spaces on geometric structures, Aspects of low-dimensional manifolds, Adv. Stud. Pure Math. 20, 263-299 (1992). Zbl0798.53030MR1208313
- Keen (L.) and Series (C.).— Continuity of convex hull boundaries, Pac. J. Math. 127, 457-519 (1988). Zbl0838.30043
- Lecuire (C.).— Plissage des variété hyperboliques de dimension 3, Inventiones Mathematicae 164, no. 1, 85-141 (2006). Zbl1097.57017MR2207784
- Lecuire (C.).— Bending map and strong convergence, preprint.
- Otal (J.-P.).— Sur la dégénérescence des groupes de Schottky, Duke Math. J. 74, 777-792 (1994). Zbl0828.57008MR1277954
- Otal (J.-P.).— Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235 (1996). Zbl0855.57003
- Series (C.).— Quasifuchsian groups with small bending, Warwick preprint (2002).
- Taylor (E.).— Geometric finiteness and the convergence of Kleinian groups, Com. Anal. Geom. 5, 497-533 (1997). Zbl0896.20033MR1487726
- Thurston (W.P.).— The topology and geometry of 3-manifolds, Notes de cours, Université de Princeton (1976-79).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.