Global well-posedness for the primitive equations with less regular initial data

Frédéric Charve[1]

  • [1] Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées, UMR 8050, Université Paris 12, Bâtiment P3, 61 avenue du Général de Gaulle 94010 Créteil, France.

Annales de la faculté des sciences de Toulouse Mathématiques (2008)

  • Volume: 17, Issue: 2, page 221-238
  • ISSN: 0240-2963

Abstract

top
This paper is devoted to the study of the lifespan of the solutions of the primitive equations for less regular initial data. We interpolate the globall well-posedness results for small initial data in H ˙ 1 2 given by the Fujita-Kato theorem, and the result from [6] which gives global well-posedness if the Rossby parameter ε is small enough, and for regular initial data (oscillating part in H ˙ 1 2 H ˙ 1 and quasigeostrophic part in H 1 ).

How to cite

top

Charve, Frédéric. "Global well-posedness for the primitive equations with less regular initial data." Annales de la faculté des sciences de Toulouse Mathématiques 17.2 (2008): 221-238. <http://eudml.org/doc/10085>.

@article{Charve2008,
abstract = {This paper is devoted to the study of the lifespan of the solutions of the primitive equations for less regular initial data. We interpolate the globall well-posedness results for small initial data in $\dot\{H\}^\{\frac\{1\}\{2\}\}$ given by the Fujita-Kato theorem, and the result from [6] which gives global well-posedness if the Rossby parameter $\varepsilon $ is small enough, and for regular initial data (oscillating part in $\dot\{H\}^\{\frac\{1\}\{2\}\} \cap \dot\{H\}^1$ and quasigeostrophic part in $H^1$).},
affiliation = {Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées, UMR 8050, Université Paris 12, Bâtiment P3, 61 avenue du Général de Gaulle 94010 Créteil, France.},
author = {Charve, Frédéric},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {regular initial data; global well-posedness; primitive equations},
language = {eng},
month = {6},
number = {2},
pages = {221-238},
publisher = {Université Paul Sabatier, Toulouse},
title = {Global well-posedness for the primitive equations with less regular initial data},
url = {http://eudml.org/doc/10085},
volume = {17},
year = {2008},
}

TY - JOUR
AU - Charve, Frédéric
TI - Global well-posedness for the primitive equations with less regular initial data
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 2
SP - 221
EP - 238
AB - This paper is devoted to the study of the lifespan of the solutions of the primitive equations for less regular initial data. We interpolate the globall well-posedness results for small initial data in $\dot{H}^{\frac{1}{2}}$ given by the Fujita-Kato theorem, and the result from [6] which gives global well-posedness if the Rossby parameter $\varepsilon $ is small enough, and for regular initial data (oscillating part in $\dot{H}^{\frac{1}{2}} \cap \dot{H}^1$ and quasigeostrophic part in $H^1$).
LA - eng
KW - regular initial data; global well-posedness; primitive equations
UR - http://eudml.org/doc/10085
ER -

References

top
  1. Babin (A.), Mahalov (A.) et Nicolaenko (B.).— On the asymptotic regimes and the strongly stratified limit of rotating Boussinesq equations, Journal of Theoretical and Comp. Fluid Dynamics, 9, p. 223-251 (1997). Zbl0912.76092
  2. Babin (A.), Mahalov (A.) et Nicolaenko (B.).— Strongly stratified limit of 3D primitive equations in an infinite layer, Contemporary Mathematics, 283 (2001). Zbl1001.76030MR1861817
  3. Bergh (J.), Löfström (J.).— Interpolation Spaces : an introduction, Springer-Verlag, 1976. Zbl0344.46071MR482275
  4. Calderón (C.-P.).— Existence of weak solutions for the Navier-Stokes equations with initial data in L p , Trans. Amer. Math. Soc., 318(1), p. 179-200 (1990). Zbl0707.35118MR968416
  5. Charve (F.).— Convergence of weak solutions for the primitive system of the quasigeostrophic equations, Asymptotic Analysis, 42, p. 173-209 (2005). Zbl1082.35125MR2138793
  6. Charve (F.).— Global well-posedness and asymptotics for a geophysical fluid system, Communications in Partial Differential Equations, 29 (11 & 12), p. 1919-1940 (2004). Zbl1156.35449MR2106072
  7. Charve (F.).— Asymptotics and vortex patches for the quasigeostrophic approximation, Journal de mathématiques pures et appliquées, 85, p. 493-539 (2006). Zbl1091.35066MR2216305
  8. Chemin (J.-Y.).— Remarques sur l’existence globale pour le système de Navier-Stokes incompressible, SIAM Journal of Mathematical Analysis, 23, p. 20-28 (1992). Zbl0762.35063
  9. Chemin (J.-Y.).— A propos d’un problème de pénalisation de type antisymétrique, Journal de Mathématiques pures et appliquées, 76, p. 739-755 (1997). Zbl0896.35103
  10. Chemin (J.-Y.), Desjardins (B.), Gallagher (I.), Grenier (E.).— Anisotropy and dispersion in rotating fluids, Nonlinear Partial Differential Equations and their applications, Collège de France Seminar, Studies in Mathematics and its applications, 31, p. 171-191. Zbl1034.35107MR1935994
  11. Embid (P.), Majda (A.).— Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Communications in Partial Differential Equations, 21, p. 619-658 (1996). Zbl0849.35106MR1387463
  12. Fujita (H.), Kato (T.).— On the Navier-Stokes initial value problem I, Archiv for Rationnal Mechanic Analysis, 16, p. 269-315 (1964). Zbl0126.42301MR166499
  13. Gallagher (I.).— Applications of Schochet’s methods to parabolic equations, Journal de Mathématiques pures et appliquées, 77, p. 989-1054 (1998). Zbl1101.35330
  14. Gallagher (I.), Planchon (F.).— On global infinite energy solutions to the Navier-Stokes equations in two dimensions, Archive for Rational Mechanics and Analysis, 161, p. 307-337 (2002). Zbl1027.35090MR1891170
  15. Leray (J.).— Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Mathematica, 63, p. 193-248 (1933). 
  16. Pedlosky (J.).— Geophysical fluid dynamics, Springer (1979). Zbl0429.76001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.