The symmetric property () for the Gaussian measure
Joseph Lehec[1]
- [1] Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), Cité Descartes - 5, boulevard Descartes, Champs-sur-Marne, 77454 Marne la Vallée Cedex 2, France.
Annales de la faculté des sciences de Toulouse Mathématiques (2008)
- Volume: 17, Issue: 2, page 357-370
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topLehec, Joseph. "The symmetric property ($\tau $) for the Gaussian measure." Annales de la faculté des sciences de Toulouse Mathématiques 17.2 (2008): 357-370. <http://eudml.org/doc/10089>.
@article{Lehec2008,
abstract = {We give a proof, based on the Poincaré inequality, of the symmetric property ($\tau $) for the Gaussian measure. If $f\colon \mathbb\{R\}^d\rightarrow \mathbb\{R\}$ is continuous, bounded from below and even, we define $Hf(x)=\inf _\{y\} f(x+y)+ \frac\{1\}\{2\} |y|^2 $ and we have\[ \int \mathrm\{e\}^\{-f\} \, d\gamma \_d \int \mathrm\{e\}^\{Hf\} \, d\gamma \_d \le 1. \]This property is equivalent to a certain functional form of the Blaschke-Santaló inequality, as explained in a paper by Artstein, Klartag and Milman.},
affiliation = {Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), Cité Descartes - 5, boulevard Descartes, Champs-sur-Marne, 77454 Marne la Vallée Cedex 2, France.},
author = {Lehec, Joseph},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {property ; Gaussian measure; Santalo inequality},
language = {eng},
month = {6},
number = {2},
pages = {357-370},
publisher = {Université Paul Sabatier, Toulouse},
title = {The symmetric property ($\tau $) for the Gaussian measure},
url = {http://eudml.org/doc/10089},
volume = {17},
year = {2008},
}
TY - JOUR
AU - Lehec, Joseph
TI - The symmetric property ($\tau $) for the Gaussian measure
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 2
SP - 357
EP - 370
AB - We give a proof, based on the Poincaré inequality, of the symmetric property ($\tau $) for the Gaussian measure. If $f\colon \mathbb{R}^d\rightarrow \mathbb{R}$ is continuous, bounded from below and even, we define $Hf(x)=\inf _{y} f(x+y)+ \frac{1}{2} |y|^2 $ and we have\[ \int \mathrm{e}^{-f} \, d\gamma _d \int \mathrm{e}^{Hf} \, d\gamma _d \le 1. \]This property is equivalent to a certain functional form of the Blaschke-Santaló inequality, as explained in a paper by Artstein, Klartag and Milman.
LA - eng
KW - property ; Gaussian measure; Santalo inequality
UR - http://eudml.org/doc/10089
ER -
References
top- Artstein-Avidan (S.), Klartag (B.), and Milman (V.).— The Santaló point of a function, and a functional form of Santaló inequality, Mathematika 51, p. 33-48 (2005). Zbl1121.52021MR2220210
- Ball (K.).— Isometric problems in and sections of convex sets, PhD dissertation, University of Cambridge, (1986).
- Ball (K.).— An elementary introduction to modern convex geometry, Flavors of geometry, edited by S. Levy, Cambridge University Press, (1997). Zbl0901.52002MR1491097
- Berger (M.).— Geometry, vol. I-II, translated from the French by M. Cole and S. Levy, Universitext, Springer, (1987). Zbl0606.51001
- Caffarelli (L.A.).— Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. math. phys. 214, no. 3, p. 547-563 (2000). Zbl0978.60107MR1800860
- Cordero-Erausquin (D.), Fradelizi (M.), and Maurey (B.).— The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, J. Funct. Anal. 214, p. 410-427 (2004). Zbl1073.60042MR2083308
- Fradelizi (M.) and Meyer (M.).— Some functional forms of Blaschke-Santaló inequality, Math. Z., 256, no. 2, p. 379-395 (2007). Zbl1128.52007MR2289879
- Klartag (B.).— Marginals of geometric inequalities, Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1910, Springer, p. 133-166 (2007). Zbl1132.52015MR2349606
- Ledoux (M.).— The concentration of measure phenomenon, Mathematical Surveys and Monographs, American Mathematical Society, (2001). Zbl0995.60002MR1849347
- Lutwak (E.) and Zhang (G.).— Blaschke-Santaló inequalities, J. Diff. Geom. 47, no. 1, p. 1-16 (1997). Zbl0906.52003MR1601426
- Maurey (B.).— Some deviation inequalities, Geom. Funct. Anal. 1, no. 2, p. 188-197 (1991). Zbl0756.60018MR1097258
- Meyer (M.) and Pajor (A.).— On Santaló’s inequality, Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1376, Springer, 1989, p. 261-263. Zbl0673.52010
- Pisier (G.).— The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, Cambridge University Press, (1989). Zbl0698.46008MR1036275
- Saint-Raymond (J.).— Sur le volume des corps convexes symétriques, in Séminaire d’initiation à l’Analyse, 20ème année, edited by G. Choquet, M. Rogalski and J. Saint-Raymond, Publ. Math. Univ. Pierre et Marie Curie, 1981. Zbl0531.52006
- Santaló (L.A.).— Un invariante afin para los cuerpos convexos del espacio de dimensiones, Portugaliae Math. 8, p. 155-161 (1949). Zbl0038.35702
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.