On the analytic non-integrability of the Rattleback problem

H. R. Dullin[1]; A.V. Tsygvintsev[2]

  • [1] School of Mathematics and Statitics F07. University of Sydney NSW 2006. Sydney. Australia.
  • [2] Unité de mathématiques pures et appliquées. École Normale Supérieure de Lyon 46, allée d’Italie, Lyon F–69364 Lyon Cedex 07, France.

Annales de la faculté des sciences de Toulouse Mathématiques (2008)

  • Volume: 17, Issue: 3, page 495-517
  • ISSN: 0240-2963

Abstract

top
We establish the analytic non-integrability of the nonholonomic ellipsoidal rattleback model for a large class of parameter values. Our approach is based on the study of the monodromy group of the normal variational equations around a particular orbit. The imbedding of the equations of the heavy rigid body into the rattleback model is discussed.

How to cite

top

Dullin, H. R., and Tsygvintsev, A.V.. "On the analytic non-integrability of the Rattleback problem." Annales de la faculté des sciences de Toulouse Mathématiques 17.3 (2008): 495-517. <http://eudml.org/doc/10094>.

@article{Dullin2008,
abstract = {We establish the analytic non-integrability of the nonholonomic ellipsoidal rattleback model for a large class of parameter values. Our approach is based on the study of the monodromy group of the normal variational equations around a particular orbit. The imbedding of the equations of the heavy rigid body into the rattleback model is discussed.},
affiliation = {School of Mathematics and Statitics F07. University of Sydney NSW 2006. Sydney. Australia.; Unité de mathématiques pures et appliquées. École Normale Supérieure de Lyon 46, allée d’Italie, Lyon F–69364 Lyon Cedex 07, France.},
author = {Dullin, H. R., Tsygvintsev, A.V.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {nonholonomic ellipsoidal model; variational equations; monodromy group},
language = {eng},
month = {6},
number = {3},
pages = {495-517},
publisher = {Université Paul Sabatier, Toulouse},
title = {On the analytic non-integrability of the Rattleback problem},
url = {http://eudml.org/doc/10094},
volume = {17},
year = {2008},
}

TY - JOUR
AU - Dullin, H. R.
AU - Tsygvintsev, A.V.
TI - On the analytic non-integrability of the Rattleback problem
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 3
SP - 495
EP - 517
AB - We establish the analytic non-integrability of the nonholonomic ellipsoidal rattleback model for a large class of parameter values. Our approach is based on the study of the monodromy group of the normal variational equations around a particular orbit. The imbedding of the equations of the heavy rigid body into the rattleback model is discussed.
LA - eng
KW - nonholonomic ellipsoidal model; variational equations; monodromy group
UR - http://eudml.org/doc/10094
ER -

References

top
  1. Borisov (A.V.), Mamaev (I.S.).— Strange attractors in rattleback dynamics, Phys. Usp., 46 (4), 393-403 (2003). 
  2. Lappo-Danilevsky (J.A.).— Mémoires sur la théorie des systèmes des équations différentielles linéaires, Chelsea (1953). Zbl0051.32301MR54111
  3. Garcia (A.), Hubbard (M.).— Spin reversal of the rattleback : theory and experiment. Proceedings of the Royal Society of London A 418, 165-197 (1988). MR953280
  4. Gantmacher (F. R.).— The theory of matrices. Vol. 2. AMS Chelsea Publishing, Providence, RI (1998). Zbl0927.15002MR1657129
  5. Tsygvintsev (A.).— Non-existence of new meromorphic first integrals in the planar three-body problem. Celestial Mech. Dynam. Astronom. 86, no. 3, 237–247 (2003). Zbl1062.70024MR1988844
  6. Morales-Ruiz (J.).— Differential Galois theory and non–integrability of Hamiltonian systems, Birkhäuser Verlag, Basel (1999). Zbl0934.12003MR1713573
  7. Ziglin (S.L.).— Branching of solutions and non-existence of first integrals in Hamiltonian Mechanics I, Funct. Anal. Appl. 16, 181–189 (1982). Zbl0524.58015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.