Asymptotic Solutions of nonlinear difference equations
- [1] Departamento de Matemática, Universidade de Évora. Colégio Luis António Verney, 7000-671 Évora, Portugal.
Annales de la faculté des sciences de Toulouse Mathématiques (2008)
- Volume: 17, Issue: 3, page 635-660
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Artigue (M.), Gautheron (V.), Isambert (E.).— Une notion non standard d’attracteurs : les fleuves. Mathématiques finitaires Analyse non standard (Diener, M. and Wallet, G. eds.), Tome 2, Publ. Math. Univ. Paris VII, p. 191-208 (1989). Zbl0684.58021MR1028798
- Benoît (E.), Callot (J.-L.), Diener (F.), Diener (M.) .— Chasse au canard, Collect. Math. 32, no. 1-4, p. 37-119 (1981). Zbl0529.34046MR643399
- Benzaid (Z.), Lutz (D. A.) .— Asymptotic representation of solutions of perturbed systems of linear difference equations. Stud. Appl. Math. 77, no. 3, p. 195-221 (1987). Zbl0628.39002MR1002291
- Van den Berg (I. P.) .— On solutions of polynomial growth of ordinary differential equations J. Differential Equations, 81 (2), p. 368-402 (1989). Zbl0699.34059MR1016088
- Van den Berg (I. P.) .— Macroscopic rivers. In : Dynamic bifurcations (Benoît, E. ed.), Lect. N. Math. 1493, p. 190-209, Springer (1991). Zbl0875.34016MR1167005
- Van den Berg (I. P.) .— Extended use of IST, Ann. Pure Appl. Logic 58 (1992). Zbl0777.03019MR1169787
- Van den Berg (I. P.) .— Asymptotics of families of solutions of nonlinear difference equations, Logic and Analysis 2, p. 153-185 (2008). Zbl1170.39006MR2403502
- Diener (F.), Diener (M.) (eds.) .— Nonstandard analysis in practice. Universitext, Springer (1995). Zbl0848.26015MR1396794
- Diener (M.) .— Détermination et existence des fleuves en dimension deux, C. R. Acad. Sci. Paris Sér. I Math. 301, no. 20, p. 899-902 (1985). Zbl0582.34066MR829057
- Diener (M.), Reeb (G.) .— Champs polynômiaux : nouvelles trajectoires remarquables, Bull. Soc. Math. Belg. Sér. A 38, p. 131-150 (1987). Zbl0681.34034MR885526
- Elaydi (S.) .— An introduction to difference equations. ed., Springer (2005). Zbl1071.39001MR2128146
- Fruchard (A.), Schäfke (R.) .— Analytic solutions of difference equations with small step size. In memory of W. A. Harris, J. Differ. Equations Appl. 7, no. 5, p. 651-684 (2001). Zbl1006.39003MR1871573
- Harris (W. A. Jr.), Sibuya (Y.) .— Asymptotic solutions of systems of nonlinear difference equations. Arch. Rational Mech. Anal. 15, p. 377-395 (1964). Zbl0122.09704MR159148
- Harris (W. A. Jr.), Sibuya (Y.) .— On asymptotic solutions of systems of nonlinear difference equations. J. Reine Angew. Math. 222, p. 120-135 (1966). Zbl0142.05703MR188653
- Immink (G. K.).— Asymptotics of analytic difference equations. Springer Lect. N. Math. 1085 (1984). Zbl0548.39001MR765699
- Lakshmikantham (V.), Trigiante (D.) .— Theory of difference equations : numerical methods and applications. Second edition. Monographs and Textbooks in Pure and Applied Mathematics, 251. Marcel Dekker, Inc., New York (2002). Zbl1014.39001MR1988945
- Nelson (E.) .— Internal Set Theory, Bull. Amer. Math. Soc. 83, no. 6, p. 1165-1198 (1977). Zbl0373.02040MR469763
- Nörlund (N. E.) .— Sur les équations linéaires aux différences finies à coefficients rationnels. Acta Math. 40, no. 1, p. 191-249 (1916). Zbl46.0703.06MR1555137
- Nörlund (N. E.) .— Mémoire sur le calcul aux différences finies. Acta Math. 44, no. 1, p. 71-212 (1923). Zbl49.0322.02MR1555184
- Poincaré (R.) .— Sur les équations linéaires aux différences ordinaires et aux différences finies, American Journal of Mathematics 7, 203-258 (1885). Zbl17.0290.01
- Robinson (A.) .— Non-standard analysis. ed., Princ. Univ. Press (1996). Zbl0843.26012MR1373196