Equisingular generic discriminants and Whitney conditions

Eric Dago Akéké[1]

  • [1] UFR de Mathématiques et d’Informatique, Université d’Abidjan-Cocody, 21 BP 3821 Abidjan 21 (Côte d’Ivoire)

Annales de la faculté des sciences de Toulouse Mathématiques (2008)

  • Volume: 17, Issue: 4, page 661-671
  • ISSN: 0240-2963

Abstract

top
The purpose of this article is to show that the Whitney conditions are satisfied for complex analytic families of normal surface singularities for which the generic discriminants are equisingular. According to J. Briançon and J. P. Speder the constancy of the topological type of a family of surface singularities does not imply Whitney conditions in general. We will see here that for a family of minimal normal surface singularities these two equisingularity conditions are equivalent.

How to cite

top

Dago Akéké, Eric. "Equisingular generic discriminants and Whitney conditions." Annales de la faculté des sciences de Toulouse Mathématiques 17.4 (2008): 661-671. <http://eudml.org/doc/10100>.

@article{DagoAkéké2008,
abstract = {The purpose of this article is to show that the Whitney conditions are satisfied for complex analytic families of normal surface singularities for which the generic discriminants are equisingular. According to J. Briançon and J. P. Speder the constancy of the topological type of a family of surface singularities does not imply Whitney conditions in general. We will see here that for a family of minimal normal surface singularities these two equisingularity conditions are equivalent.},
affiliation = {UFR de Mathématiques et d’Informatique, Université d’Abidjan-Cocody, 21 BP 3821 Abidjan 21 (Côte d’Ivoire)},
author = {Dago Akéké, Eric},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {equisingularity; discriminant; Whitney conditions; minimal surface singularity},
language = {eng},
month = {6},
number = {4},
pages = {661-671},
publisher = {Université Paul Sabatier, Toulouse},
title = {Equisingular generic discriminants and Whitney conditions},
url = {http://eudml.org/doc/10100},
volume = {17},
year = {2008},
}

TY - JOUR
AU - Dago Akéké, Eric
TI - Equisingular generic discriminants and Whitney conditions
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 4
SP - 661
EP - 671
AB - The purpose of this article is to show that the Whitney conditions are satisfied for complex analytic families of normal surface singularities for which the generic discriminants are equisingular. According to J. Briançon and J. P. Speder the constancy of the topological type of a family of surface singularities does not imply Whitney conditions in general. We will see here that for a family of minimal normal surface singularities these two equisingularity conditions are equivalent.
LA - eng
KW - equisingularity; discriminant; Whitney conditions; minimal surface singularity
UR - http://eudml.org/doc/10100
ER -

References

top
  1. Akéké (E. D.).— Classification des singularités minimales de surfaces normales par les discriminants génériques. PhD thesis, Université de Provence, Marseille (2005). 
  2. Artin (M.).— On isolated rational singularities of surfaces. Amer. J. Math, 88:129-136 (1966). Zbl0142.18602MR199191
  3. Bondil (R.).— Discriminant of a generic projection of a minimal normal surface singularity. C. R. Acad. Sc. Paris, 337 (2003). Zbl1053.14040MR2001134
  4. Bondil (R.).— Fine polar invariants of minimal singularities of surfaces. preprint, Arxiv: AG/0401434 (2004). 
  5. Bondil (R.) and Lê (D.T.).— Résolution des singularités de surfaces par éclatements normalisés. Trends in singularities, p. 31-81 (2002). Zbl1058.14023MR1900780
  6. Briançon (J.), Galligo (A.), and Granger (M.).— Déformations Équisingulières des germes de courbes gauches réduites. Mém. Soc. Math. France, 69, 1980/1981. Zbl0447.14004MR607805
  7. Briançon (J.) and Henry (J.P.).— Équisingularité générique des familles de surfaces à singularité isolée. Bull. Sc. Math. France, 108:259-281 (1980). Zbl0482.14004MR606093
  8. Briançon (J.) and Speder (J.P.).— La trivialité topologique n’implique pas les conditions de Whitney. C. R. Acad. Sc. Paris, 280 (1975). Zbl0331.32010MR425165
  9. Buchweitz (R.-O.) and Greuel (G.-M.).— The Milnor number and deformations of complex curves singularities. Invent. Math., 58:241-281 (1980). Zbl0458.32014MR571575
  10. Gaffney (T.).— Polar multiplicities and equisingularity of map germs. Topology, 32:185-223 (1993). Zbl0790.57020MR1204414
  11. Henry (J.P.), Merle (M.) and Sabbah (C.).— Sur la condition de Thom stricte pour un morphisme analytique complexe. Ann. scient. Ec. Norm. Sup., 17:227-268 (1984). Zbl0551.32012MR760677
  12. Kollár (J.).— Toward moduli of singular varieties. Comp. Math., 56:369-398 (1985). Zbl0666.14003MR814554
  13. Lê (D.T.) and Saito (K.).— La constance du nombre de Milnor donne des bonnes stratifications. C. R. Acad. Sc. Paris, 277 (1973). Zbl0283.32007MR350063
  14. Lê (D.T.) and Teissier (B.).— Variétés polaires locales et classes de Chern des variétés singulières. Ann. Math., 114:457-491 (1981). Zbl0488.32004MR634426
  15. Mather (J.).— Stratifications and mappings. Academic press, 1973. Dynamical systems. Zbl0286.58003MR368064
  16. Milnor (J.).— Singular points of complex hypersurfaces, volume 61. Princeton University press, 1968. Ann. Math. Studies. Zbl0184.48405MR239612
  17. Neumann (W.D.).— A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves. Trans. Amer. Math. Soc., 268(2):299-344 (1981). Zbl0546.57002MR632532
  18. Spivakovsky (M.).— Sandwiched singularities and desingularisation of surfaces by normalized Nash transformations. Ann. Math., 131:411-491 (1990). Zbl0719.14005MR1053487
  19. Teissier (B.).— Variétés polaires II, Multiplicités polaires, Sections planes et conditions de Whitney. In Algebraic Geometry, volume 961 of Lecture notes in math., p. 314-491, 1982. La Rabida 1981, Springer-Verlag. Zbl0585.14008MR708342
  20. Zariski (O.).— Studies in equisingularity, equivalent singularities of plane algebroid curves. Amer. J. Math., 87 (1965). Zbl0132.41601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.