Real analytic manifolds in n with parabolic complex tangents along a submanifold of codimension one

Patrick Ahern[1]; Xianghong Gong[1]

  • [1] Department of Mathematics, University of Wisconsin, Madison, WI 53706, U.S.A.

Annales de la faculté des sciences de Toulouse Mathématiques (2009)

  • Volume: 18, Issue: 1, page 1-64
  • ISSN: 0240-2963

Abstract

top
We will classify n -dimensional real submanifolds in n which have a set of parabolic complex tangents of real dimension n - 1 . All such submanifolds are equivalent under formal biholomorphisms. We will show that the equivalence classes under convergent local biholomorphisms form a moduli space of infinite dimension. We will also show that there exists an n -dimensional submanifold M in n such that its images under biholomorphisms ( z 1 , , z n ) ( r z 1 , , r z n - 1 , r 2 z n ) , r > 1 , are not equivalent to M via any local volume-preserving holomorphic map.

How to cite

top

Ahern, Patrick, and Gong, Xianghong. "Real analytic manifolds in ${\mathbb{C}}^n$ with parabolic complex tangents along a submanifold of codimension one." Annales de la faculté des sciences de Toulouse Mathématiques 18.1 (2009): 1-64. <http://eudml.org/doc/10107>.

@article{Ahern2009,
abstract = {We will classify $n$-dimensional real submanifolds in $\{\{\mathbb\{C\}\}\}^n$ which have a set of parabolic complex tangents of real dimension $n-1$. All such submanifolds are equivalent under formal biholomorphisms. We will show that the equivalence classes under convergent local biholomorphisms form a moduli space of infinite dimension. We will also show that there exists an $n$-dimensional submanifold $M$ in $\{\{\mathbb\{C\}\}\}^n$ such that its images under biholomorphisms $(z_1, \dots , z_n) \mapsto (rz_1, \dots , rz_\{n-1\}, r^2z_n)$, $r &gt; 1$, are not equivalent to $M$ via any local volume-preserving holomorphic map.},
affiliation = {Department of Mathematics, University of Wisconsin, Madison, WI 53706, U.S.A.; Department of Mathematics, University of Wisconsin, Madison, WI 53706, U.S.A.},
author = {Ahern, Patrick, Gong, Xianghong},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {CR singular points; formal equivalence; parabolic complex tangents; -dimensional real submanifolds in },
language = {eng},
month = {6},
number = {1},
pages = {1-64},
publisher = {Université Paul Sabatier, Toulouse},
title = {Real analytic manifolds in $\{\mathbb\{C\}\}^n$ with parabolic complex tangents along a submanifold of codimension one},
url = {http://eudml.org/doc/10107},
volume = {18},
year = {2009},
}

TY - JOUR
AU - Ahern, Patrick
AU - Gong, Xianghong
TI - Real analytic manifolds in ${\mathbb{C}}^n$ with parabolic complex tangents along a submanifold of codimension one
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/6//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 1
SP - 1
EP - 64
AB - We will classify $n$-dimensional real submanifolds in ${{\mathbb{C}}}^n$ which have a set of parabolic complex tangents of real dimension $n-1$. All such submanifolds are equivalent under formal biholomorphisms. We will show that the equivalence classes under convergent local biholomorphisms form a moduli space of infinite dimension. We will also show that there exists an $n$-dimensional submanifold $M$ in ${{\mathbb{C}}}^n$ such that its images under biholomorphisms $(z_1, \dots , z_n) \mapsto (rz_1, \dots , rz_{n-1}, r^2z_n)$, $r &gt; 1$, are not equivalent to $M$ via any local volume-preserving holomorphic map.
LA - eng
KW - CR singular points; formal equivalence; parabolic complex tangents; -dimensional real submanifolds in
UR - http://eudml.org/doc/10107
ER -

References

top
  1. Bishop (E.).— Differentiable manifolds in complex Euclidean space, Duke Math. J., 32, p. 1-22 (1965). Zbl0154.08501MR200476
  2. Écalle (J.).— Les fonctions résurgentes, I, II. Publications Mathématiques d’Orsay 81, 5, 6, 1-247, p. 248-531, Université de Paris-Sud, Département de Mathématique, Orsay (1981). Zbl0499.30035
  3. Gong (X.).— On the convergence of normalizations of real analytic surfaces near hyperbolic complex tangents, Comment. Math. Helv. 69, no.4, p. 549-574 (1994). Zbl0826.32012MR1303227
  4. Gong (X.).— Real analytic submanifolds under unimodular transformations, Proc. Amer. Math. Soc. 123, no.1, p. 191-200 (1995). Zbl0821.32012MR1231299
  5. Gong (X.).— Divergence of the normalization for real Lagrangian surfaces near complex tangents, Pacific J. Math. 176, no. 2, p. 311–324 (1996). Zbl0879.32008MR1434993
  6. Huang (X.) and Yin (W.).— A Bishop surface with a vanishing Bishop invariant, preprint. Zbl1171.53045
  7. Malgrange (B.).— Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, Bourbaki Seminar, Vol. 1981/1982, pp. 59-73, Astérisque, p. 92-93, Soc. Math. France, Paris (1982). Zbl0526.58009MR689526
  8. Moser (J.K.) and Webster (S.M.).— Normal forms for real surfaces in 2 near complex tangents and hyperbolic surface transformations, Acta Math., 150, p. 255-296 (1983). Zbl0519.32015MR709143
  9. Voronin (S.M.).— Analytic classification of germs of conformal mappings ( , 0 ) ( , 0 ) , Functional Anal. Appl. 15, no. 1, p. 1-13 (1981). Zbl0463.30010MR609790
  10. Voronin (S.M.).— The Darboux-Whitney theorem and related questions, in Nonlinear Stokes phenomena, p. 139–233, Adv. Soviet Math., 14, Amer. Math. Soc., Providence, RI, (1993). Zbl0789.58015MR1206044
  11. Webster (S.M.).— Holomorphic symplectic normalization of a real function, Ann. Scuola Norm. Sup. di Pisa, 19, p. 69-86 (1992). Zbl0763.58010MR1183758

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.