Real analytic manifolds in with parabolic complex tangents along a submanifold of codimension one
Patrick Ahern[1]; Xianghong Gong[1]
- [1] Department of Mathematics, University of Wisconsin, Madison, WI 53706, U.S.A.
Annales de la faculté des sciences de Toulouse Mathématiques (2009)
- Volume: 18, Issue: 1, page 1-64
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topAhern, Patrick, and Gong, Xianghong. "Real analytic manifolds in ${\mathbb{C}}^n$ with parabolic complex tangents along a submanifold of codimension one." Annales de la faculté des sciences de Toulouse Mathématiques 18.1 (2009): 1-64. <http://eudml.org/doc/10107>.
@article{Ahern2009,
abstract = {We will classify $n$-dimensional real submanifolds in $\{\{\mathbb\{C\}\}\}^n$ which have a set of parabolic complex tangents of real dimension $n-1$. All such submanifolds are equivalent under formal biholomorphisms. We will show that the equivalence classes under convergent local biholomorphisms form a moduli space of infinite dimension. We will also show that there exists an $n$-dimensional submanifold $M$ in $\{\{\mathbb\{C\}\}\}^n$ such that its images under biholomorphisms $(z_1, \dots , z_n) \mapsto (rz_1, \dots , rz_\{n-1\}, r^2z_n)$, $r > 1$, are not equivalent to $M$ via any local volume-preserving holomorphic map.},
affiliation = {Department of Mathematics, University of Wisconsin, Madison, WI 53706, U.S.A.; Department of Mathematics, University of Wisconsin, Madison, WI 53706, U.S.A.},
author = {Ahern, Patrick, Gong, Xianghong},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {CR singular points; formal equivalence; parabolic complex tangents; -dimensional real submanifolds in },
language = {eng},
month = {6},
number = {1},
pages = {1-64},
publisher = {Université Paul Sabatier, Toulouse},
title = {Real analytic manifolds in $\{\mathbb\{C\}\}^n$ with parabolic complex tangents along a submanifold of codimension one},
url = {http://eudml.org/doc/10107},
volume = {18},
year = {2009},
}
TY - JOUR
AU - Ahern, Patrick
AU - Gong, Xianghong
TI - Real analytic manifolds in ${\mathbb{C}}^n$ with parabolic complex tangents along a submanifold of codimension one
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/6//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 1
SP - 1
EP - 64
AB - We will classify $n$-dimensional real submanifolds in ${{\mathbb{C}}}^n$ which have a set of parabolic complex tangents of real dimension $n-1$. All such submanifolds are equivalent under formal biholomorphisms. We will show that the equivalence classes under convergent local biholomorphisms form a moduli space of infinite dimension. We will also show that there exists an $n$-dimensional submanifold $M$ in ${{\mathbb{C}}}^n$ such that its images under biholomorphisms $(z_1, \dots , z_n) \mapsto (rz_1, \dots , rz_{n-1}, r^2z_n)$, $r > 1$, are not equivalent to $M$ via any local volume-preserving holomorphic map.
LA - eng
KW - CR singular points; formal equivalence; parabolic complex tangents; -dimensional real submanifolds in
UR - http://eudml.org/doc/10107
ER -
References
top- Bishop (E.).— Differentiable manifolds in complex Euclidean space, Duke Math. J., 32, p. 1-22 (1965). Zbl0154.08501MR200476
- Écalle (J.).— Les fonctions résurgentes, I, II. Publications Mathématiques d’Orsay 81, 5, 6, 1-247, p. 248-531, Université de Paris-Sud, Département de Mathématique, Orsay (1981). Zbl0499.30035
- Gong (X.).— On the convergence of normalizations of real analytic surfaces near hyperbolic complex tangents, Comment. Math. Helv. 69, no.4, p. 549-574 (1994). Zbl0826.32012MR1303227
- Gong (X.).— Real analytic submanifolds under unimodular transformations, Proc. Amer. Math. Soc. 123, no.1, p. 191-200 (1995). Zbl0821.32012MR1231299
- Gong (X.).— Divergence of the normalization for real Lagrangian surfaces near complex tangents, Pacific J. Math. 176, no. 2, p. 311–324 (1996). Zbl0879.32008MR1434993
- Huang (X.) and Yin (W.).— A Bishop surface with a vanishing Bishop invariant, preprint. Zbl1171.53045
- Malgrange (B.).— Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, Bourbaki Seminar, Vol. 1981/1982, pp. 59-73, Astérisque, p. 92-93, Soc. Math. France, Paris (1982). Zbl0526.58009MR689526
- Moser (J.K.) and Webster (S.M.).— Normal forms for real surfaces in near complex tangents and hyperbolic surface transformations, Acta Math., 150, p. 255-296 (1983). Zbl0519.32015MR709143
- Voronin (S.M.).— Analytic classification of germs of conformal mappings , Functional Anal. Appl. 15, no. 1, p. 1-13 (1981). Zbl0463.30010MR609790
- Voronin (S.M.).— The Darboux-Whitney theorem and related questions, in Nonlinear Stokes phenomena, p. 139–233, Adv. Soviet Math., 14, Amer. Math. Soc., Providence, RI, (1993). Zbl0789.58015MR1206044
- Webster (S.M.).— Holomorphic symplectic normalization of a real function, Ann. Scuola Norm. Sup. di Pisa, 19, p. 69-86 (1992). Zbl0763.58010MR1183758
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.