Local Peak Sets in Weakly Pseudoconvex Boundaries in n

Borhen Halouani[1]

  • [1] LMPA, Centre Universitaire de la Mi-Voix. Bât H. Poincaré, 50 rue F. Buisson, B.P. 699, F-62228 Calais Cédex, France.

Annales de la faculté des sciences de Toulouse Mathématiques (2009)

  • Volume: 18, Issue: 3, page 577-598
  • ISSN: 0240-2963

Abstract

top
We give a sufficient condition for a C ω (resp. C )-totally real, complex-tangential, ( n - 1 ) -dimensional submanifold in a weakly pseudoconvex boundary of class C ω (resp. C ) to be a local peak set for the class 𝒪 (resp. A ). Moreover, we give a consequence of it for Catlin’s multitype.

How to cite

top

Halouani, Borhen. "Local Peak Sets in Weakly Pseudoconvex Boundaries in $\mathbb{C}^n$." Annales de la faculté des sciences de Toulouse Mathématiques 18.3 (2009): 577-598. <http://eudml.org/doc/10118>.

@article{Halouani2009,
abstract = {We give a sufficient condition for a $C^\omega $ (resp. $C^\infty $)-totally real, complex-tangential, $(n-1)$-dimensional submanifold in a weakly pseudoconvex boundary of class $C^\omega $ (resp. $C^\infty $) to be a local peak set for the class $\mathcal\{O\}$ (resp. $A^\infty $). Moreover, we give a consequence of it for Catlin’s multitype.},
affiliation = {LMPA, Centre Universitaire de la Mi-Voix. Bât H. Poincaré, 50 rue F. Buisson, B.P. 699, F-62228 Calais Cédex, France.},
author = {Halouani, Borhen},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {7},
number = {3},
pages = {577-598},
publisher = {Université Paul Sabatier, Toulouse},
title = {Local Peak Sets in Weakly Pseudoconvex Boundaries in $\mathbb\{C\}^n$},
url = {http://eudml.org/doc/10118},
volume = {18},
year = {2009},
}

TY - JOUR
AU - Halouani, Borhen
TI - Local Peak Sets in Weakly Pseudoconvex Boundaries in $\mathbb{C}^n$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/7//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 3
SP - 577
EP - 598
AB - We give a sufficient condition for a $C^\omega $ (resp. $C^\infty $)-totally real, complex-tangential, $(n-1)$-dimensional submanifold in a weakly pseudoconvex boundary of class $C^\omega $ (resp. $C^\infty $) to be a local peak set for the class $\mathcal{O}$ (resp. $A^\infty $). Moreover, we give a consequence of it for Catlin’s multitype.
LA - eng
UR - http://eudml.org/doc/10118
ER -

References

top
  1. Boutet de Monvel ( L.), Iordan (A.).— Peak curves in weakly Pseudoconvex Boundaries in 2 . J. Diff. Geometry 7, Number 1, p. 1-15 (1997). Zbl0916.32014MR1630765
  2. Boggess (A.).— CR manifolds and the tangential Cauchy-Riemann complex. Studies in advanced mathematics (Texas A&M University) (1992). Zbl0760.32001MR1211412
  3. Boas ( H.P.), Straube (E.J.).— On equality of line type and variety type of real hypersurfaces in n . J. Geom. Anal. 2, No.2, p. 95-98 (1992). Zbl0749.32009MR1151753
  4. Catlin (D.).— Boundary invariants of pseudoconvex domains. Annals of Mathematics, 120, p. 529-586 (1984). Zbl0583.32048MR769163
  5. D’Angelo (J.P.).— Real hypersurfaces, orders of contact, and applications. Annals of Mathematics, 115, p. 615-637 (1982). Zbl0488.32008MR657241
  6. Hakim (M.), Sibony (N.).— Ensembles pics dans les domaines strictement pseudoconvexes. Duke Math. J. 45, p. 601-607 (1978). Zbl0402.32008MR507460
  7. Michel (J.).— Integral representations on weakly pseudoconvex domains. Math. Z. 208, No. 3, p. 437-462 (1991). Zbl0725.32002MR1134587
  8. Narasimhan (R.).— Analysis on Real and Complex Manifolds. North-Holland Mathematical Library (1968) Zbl0188.25803MR251745

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.