Local Peak Sets in Weakly Pseudoconvex Boundaries in
- [1] LMPA, Centre Universitaire de la Mi-Voix. Bât H. Poincaré, 50 rue F. Buisson, B.P. 699, F-62228 Calais Cédex, France.
Annales de la faculté des sciences de Toulouse Mathématiques (2009)
- Volume: 18, Issue: 3, page 577-598
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topHalouani, Borhen. "Local Peak Sets in Weakly Pseudoconvex Boundaries in $\mathbb{C}^n$." Annales de la faculté des sciences de Toulouse Mathématiques 18.3 (2009): 577-598. <http://eudml.org/doc/10118>.
@article{Halouani2009,
abstract = {We give a sufficient condition for a $C^\omega $ (resp. $C^\infty $)-totally real, complex-tangential, $(n-1)$-dimensional submanifold in a weakly pseudoconvex boundary of class $C^\omega $ (resp. $C^\infty $) to be a local peak set for the class $\mathcal\{O\}$ (resp. $A^\infty $). Moreover, we give a consequence of it for Catlin’s multitype.},
affiliation = {LMPA, Centre Universitaire de la Mi-Voix. Bât H. Poincaré, 50 rue F. Buisson, B.P. 699, F-62228 Calais Cédex, France.},
author = {Halouani, Borhen},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {7},
number = {3},
pages = {577-598},
publisher = {Université Paul Sabatier, Toulouse},
title = {Local Peak Sets in Weakly Pseudoconvex Boundaries in $\mathbb\{C\}^n$},
url = {http://eudml.org/doc/10118},
volume = {18},
year = {2009},
}
TY - JOUR
AU - Halouani, Borhen
TI - Local Peak Sets in Weakly Pseudoconvex Boundaries in $\mathbb{C}^n$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/7//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 3
SP - 577
EP - 598
AB - We give a sufficient condition for a $C^\omega $ (resp. $C^\infty $)-totally real, complex-tangential, $(n-1)$-dimensional submanifold in a weakly pseudoconvex boundary of class $C^\omega $ (resp. $C^\infty $) to be a local peak set for the class $\mathcal{O}$ (resp. $A^\infty $). Moreover, we give a consequence of it for Catlin’s multitype.
LA - eng
UR - http://eudml.org/doc/10118
ER -
References
top- Boutet de Monvel ( L.), Iordan (A.).— Peak curves in weakly Pseudoconvex Boundaries in . J. Diff. Geometry 7, Number 1, p. 1-15 (1997). Zbl0916.32014MR1630765
- Boggess (A.).— CR manifolds and the tangential Cauchy-Riemann complex. Studies in advanced mathematics (Texas A&M University) (1992). Zbl0760.32001MR1211412
- Boas ( H.P.), Straube (E.J.).— On equality of line type and variety type of real hypersurfaces in . J. Geom. Anal. 2, No.2, p. 95-98 (1992). Zbl0749.32009MR1151753
- Catlin (D.).— Boundary invariants of pseudoconvex domains. Annals of Mathematics, 120, p. 529-586 (1984). Zbl0583.32048MR769163
- D’Angelo (J.P.).— Real hypersurfaces, orders of contact, and applications. Annals of Mathematics, 115, p. 615-637 (1982). Zbl0488.32008MR657241
- Hakim (M.), Sibony (N.).— Ensembles pics dans les domaines strictement pseudoconvexes. Duke Math. J. 45, p. 601-607 (1978). Zbl0402.32008MR507460
- Michel (J.).— Integral representations on weakly pseudoconvex domains. Math. Z. 208, No. 3, p. 437-462 (1991). Zbl0725.32002MR1134587
- Narasimhan (R.).— Analysis on Real and Complex Manifolds. North-Holland Mathematical Library (1968) Zbl0188.25803MR251745
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.