A p -adic approach to local analytic dynamics: analytic conjugacy of analytic maps tangent to the identity

Adrian Jenkins[1]; Steven Spallone[2]

  • [1] Department of Mathematics, Kansas State University, Manhattan, KS, 66506
  • [2] Department of Mathematics, University of Oklahoma, Norman, OK, 73072

Annales de la faculté des sciences de Toulouse Mathématiques (2009)

  • Volume: 18, Issue: 3, page 611-634
  • ISSN: 0240-2963

Abstract

top
In this note, we consider the question of local analytic equivalence of analytic functions which fix the origin and are tangent to the identity. All mappings and equivalences are considered in the non-archimedean context e.g. all norms can be considered p -adic norms. We show that any two mappings f and g which are formally equivalent are also analytically equivalent. We consider the related questions of roots and centralizers for analytic mappings. In this setting, anything which can be done formally can also be done analytically.

How to cite

top

Jenkins, Adrian, and Spallone, Steven. "A $p$-adic approach to local analytic dynamics: analytic conjugacy of analytic maps tangent to the identity." Annales de la faculté des sciences de Toulouse Mathématiques 18.3 (2009): 611-634. <http://eudml.org/doc/10120>.

@article{Jenkins2009,
abstract = {In this note, we consider the question of local analytic equivalence of analytic functions which fix the origin and are tangent to the identity. All mappings and equivalences are considered in the non-archimedean context e.g. all norms can be considered $p$-adic norms. We show that any two mappings $f$ and $g$ which are formally equivalent are also analytically equivalent. We consider the related questions of roots and centralizers for analytic mappings. In this setting, anything which can be done formally can also be done analytically.},
affiliation = {Department of Mathematics, Kansas State University, Manhattan, KS, 66506; Department of Mathematics, University of Oklahoma, Norman, OK, 73072},
author = {Jenkins, Adrian, Spallone, Steven},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {analytic maps; non-archimedean fields},
language = {eng},
month = {7},
number = {3},
pages = {611-634},
publisher = {Université Paul Sabatier, Toulouse},
title = {A $p$-adic approach to local analytic dynamics: analytic conjugacy of analytic maps tangent to the identity},
url = {http://eudml.org/doc/10120},
volume = {18},
year = {2009},
}

TY - JOUR
AU - Jenkins, Adrian
AU - Spallone, Steven
TI - A $p$-adic approach to local analytic dynamics: analytic conjugacy of analytic maps tangent to the identity
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/7//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 3
SP - 611
EP - 634
AB - In this note, we consider the question of local analytic equivalence of analytic functions which fix the origin and are tangent to the identity. All mappings and equivalences are considered in the non-archimedean context e.g. all norms can be considered $p$-adic norms. We show that any two mappings $f$ and $g$ which are formally equivalent are also analytically equivalent. We consider the related questions of roots and centralizers for analytic mappings. In this setting, anything which can be done formally can also be done analytically.
LA - eng
KW - analytic maps; non-archimedean fields
UR - http://eudml.org/doc/10120
ER -

References

top
  1. Ahern (P.), Rosay (J.-P.).— Entire functions, in the classification of differentiable germs tangent to the identity, in one or two variables, Trans. of the Amer. Math. Soc. 347, no. 2, p. 543-572 (1995). Zbl0815.30018MR1276933
  2. Arnold (V. I.).— Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1983. Zbl0507.34003MR695786
  3. Benedetto (R.) .— Hyperbolic maps in p -adic dynamics, Ergodic Th. Dyn. Sys., 21, p. 1-11 (2001). Zbl0972.37027MR1826658
  4. Bryuno (A. D.).— Analytic form of differential equations, I, Trans. Moscow Math. Soc. 25, p. 131-288 (1971). Zbl0272.34018
  5. Camacho (C.).— On the local structure of conformal mappings and holomorphic vector fields in C 2 , Bull. Soc. Math. de France Astérisque, (1978). Zbl0415.30015MR542732
  6. Ecalle (J.).— Sur les functions résurgentes, I, II, Publ. Math. d’Orsay, Université de Paris-Sud, Orsay (1981). 
  7. Fatou (P.).— Sur les equation fonctionnelles, Bull. Soc. Math. France 47, p. 161-271 (1919). Zbl47.0921.02MR1504787
  8. Harish-Chandra .— Harmonic Analysis on Reductive p -adic Groups, Proc. of Symp. in Pure Math., XXVI, Amer. Math. Soc., Providence, R.I., p. 167-192 (1973). Zbl0289.22018MR340486
  9. Herman (M.), Yoccoz (J.-C.).— Generalizations of some theorems of small divisors to non-Archimedean fields, in Geometric Dynamics (Rio de Janeiro, 1981). Springer, Berlin, p. 408-447 (1983). Zbl0528.58031MR730280
  10. Il’yashenko (Y. S.).— Nonlinear Stokes Phenomena. Adv. in Soviet Math., vol. 14, Amer. Math. Soc., Providence, RI (1993). Zbl0804.32011
  11. Jenkins (A.).— Further Reductions of Poincaré-Dulac Normal Forms, Proc. of the Amer. Math. Soc., 136, p. 1671-1680 (2008). Zbl1144.32013MR2373596
  12. Jenkins (A.).— Holomorphic germs and smooth conjugacy in a punctured neighborhood of the origin, Trans. of the Amer. Math. Soc. 360, no. 1, p. 331-346 (2008). Zbl1130.30024MR2342005
  13. Koenigs (G.).— Recherches sur les Integral de Certain Equation Fonctionelles, Ann. Scient. Ec. Norm. Sup. 1, p. 1-41 (1884). Zbl16.0376.01
  14. Malgrange (B.).— Travaux d’Ecalle et de Martinet-Ramis sur les systèmes dynamiques, Séminar Bourbaki, vol. 1981/1982, Astérisque, vol. 92-93, Soc. Math. France, Paris, p. 59-73 (1982). Zbl0526.58009MR689526
  15. Serre (J. P.).— Lie Algebras and Lie Groups: 1964 Lectures Given at Harvard University, W.A.Benjamin Inc., New York (1965). Zbl0132.27803MR218496
  16. Shcherbakov (A. A.).— Topological classification of germs of conformal mappings with identical linear part, Vestnik Moskov. Univ. Ser. I Mat. Mekh., no. 3, p. 52-57 (1982); English transl. in Moscow Univ. Math. Bull. 37 (1982). Zbl0508.30015MR671059
  17. Schikhof (W. H.).— Ultrametric Calculus: An Introduction to p -adic Analysis, Cambridge Studies in Advanced Mathematics, 4, Cambridge University Press, Cambridge (1984). Zbl0553.26006MR791759
  18. Siegel (C. L.).— Iteration of analytic functions, Ann. of Math. 43, p. 607-612 (1942). Zbl0061.14904MR7044
  19. Vieugué (D.).— Problèmes de Linéarisation dan des Familles de Germes Analytique, Thesis, L’Université D’Orléans (2005). 
  20. Voronin (S. M.).— Analytic classification of germs of conformal maps ( , 0 ) ( , 0 ) with identical linear part, Func. Anal. Appl. 15, p. 1-17 (1981). Zbl0463.30010MR609790
  21. Yoccoz (J.-C.).— Linéarisation des germes de difféomorphismes holomorphes de ( , 0 ) , C. R. Acad. Sci. Paris 306, p. 55-58 (1988). Zbl0668.58010MR929279
  22. Yoccoz (J.-C.).— Théorème de Siegel, nombres de Bryuno et polynômes quadratique, Astérisque 231, p. 3-88 (1995). MR1367353

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.