End-to-end gluing of constant mean curvature hypersurfaces
- [1] Département de mathématiques. Ecole supérieure des Sciences et Techniques de Tunis, 5 Avenue Taha Hussein 1008, Tunisia.
Annales de la faculté des sciences de Toulouse Mathématiques (2009)
- Volume: 18, Issue: 4, page 717-737
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Delaunay (C.).— Sur la surface de révolution dont la courbure moyenne est constante, Jour. de Mathématique, 6, p. 309-320 (1841).
- Eells (J.).— The surfaces of Delaunay , Math. Intelligencer 9, no.1, p. 53-57 (1987). Zbl0605.53002MR869541
- Fakhi (S.) and Pacard (F.).— Existence result for minimal hypersurfaces with prescribed finite number of planar end , Manuscripta Mathematica, vol 103, issu 4, p. 465-512 (2000). Zbl0992.53011MR1811769
- Hsiang (W. Y.) and Yu (W. C.).— A generalization of a theorem of Delaunay, J. Differ. Geom. 16, No. 2, p. 161-177 (1981). Zbl0504.53044MR638783
- Jleli (M.).— Moduli space theory of constant mean curvature hypersurfaces. Journal of Advanced Nonlinear Studies, 9 p. 29-68 (2009). Zbl1180.53007MR2473148
- Jleli (M.) and Pacard (F.).— Construction of constant mean curvature hypersurfaces with prescribed finite number of Delaunay end. To appear.
- Jleli (M.) and Pacard (F.).— An end-to-end construction for compact constant mean curvature surfaces Pacific Journal of Mathematics Vol. 221, No. 1, p. 81-108 (2005). Zbl1110.53043MR2194146
- Kapouleas (N.).— Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. (2) 131, p. 239-330 (1990). Zbl0699.53007MR1043269
- Kapouleas (N.).— Compact constant mean curvature surfaces in Euclidean three-space, J. Differ. Geom. 33, No. 3, p. 683-715 (1991). Zbl0727.53063MR1100207
- Kapouleas (N.).— Constant mean curvature surfaces constructed by fusing Went tori, Invent. Math. 119, p. 443-518 (1995). Zbl0840.53005MR1317648
- Katsuei (K.).— Surfaces of revolution with prescribed mean curvature. Tohoku. Math. J ser 32, p. 147-153 (1980). Zbl0431.53005MR567837
- Katsuei (K.).— Surfaces of revolution with prescribed mean curvature. Tohoku. Math. J ser 32, p. 147-153 (1980). Zbl0431.53005MR567837
- Kusner (R.).— Bubbles conservations laws and balanced diagram , Geometric analysis and Computer graphics, (1991) 120-137. Springer-Verlag. MR1081331
- Kusner (R.), Mazzeo (R.) and Pollack (D.).— The moduli spaces of complete embeeded constant mean curvature surfaces , Geom. Funct. Anal. 6, p. 120-137 (1996). Zbl0966.58005MR1371233
- Mazzeo (R.) and Pacard (F.).— Constant mean curvature surfaces with Delaunay ends, Comm. Anal. Geom. 9No. 1 p. 169-237 (2001). Zbl1005.53006MR1807955
- Mazzeo (R.), Pacard (F.) and Pollack (D.).— Connected sums of constant mean curvature surfaces in Euclidiean 3 space, J.Reine Ang.Math. 536, p. 115.165 (2001). Zbl0972.53010MR1837428
- Mazzeo (R.), Pacard (F.) and Pollack (D.).— The conformal theory of Alexandrov embedded constant mean curvature surfaces in , in Global theory of minimal surfaces, edited by D. Hoffman, Clay Mathematics Proceedings 2, Amer. Math. Soc, Providence, p. 525-559 (2005). Zbl1101.53006MR2167275
- Mazzeo (R.), Pollack (D.) and Uhlenbeck (K.).— Moduli spaces of singular Yammabe metrics , J. Amer. Math. 9, p. 303-344 (1996). Zbl0849.58012MR1356375
- Ratzkin (J.).— An end-to-end gluing construction for surfaces of constant mean curvature, PHD Thesis, University of Washington (2001).
- Rosenberg (H.).— Hypersurfaces of constant mean curvature in space forms, Bull. Sc. math, série 2, 117, p. 211-239 (1993). Zbl0787.53046