Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups

Cédric Bonnafé[1]; Christophe Hohlweg[2]

  • [1] Université de Franche-Comté Département de Mathématiques 16 route de Gray 25000 Besançon (France)
  • [2] The Fields Institute 222 College Street Toronto, Ontario M5T 3J1 (Canada)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 1, page 131-181
  • ISSN: 0373-0956

Abstract

top
We construct a subalgebra Σ ( W n ) of dimension 2 · 3 n - 1 of the group algebra of the Weyl group W n of type B n containing its usual Solomon algebra and the one of 𝔖 n : Σ ( W n ) is nothing but the Mantaci-Reutenauer algebra but our point of view leads us to a construction of a surjective morphism of algebras Σ ( W n ) Z Irr ( W n ) . Jöllenbeck’s construction of irreducible characters of the symmetric group by using the coplactic equivalence classes can then be transposed to W n . In an appendix, P. Baumann and C. Hohlweg present in an explicit and combinatorial way the relation between this construction of the irreducible characters of W n and that of W. Specht.

How to cite

top

Bonnafé, Cédric, and Hohlweg, Christophe. "Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups." Annales de l’institut Fourier 56.1 (2006): 131-181. <http://eudml.org/doc/10137>.

@article{Bonnafé2006,
abstract = {We construct a subalgebra $\Sigma ^\{\prime\}(W_n)$ of dimension $2\cdot 3^\{n-1\}$ of the group algebra of the Weyl group $W_n$ of type $B_n$ containing its usual Solomon algebra and the one of $\{\mathfrak\{S\}\}_n$: $\Sigma ^\{\prime\}(W_n)$ is nothing but the Mantaci-Reutenauer algebra but our point of view leads us to a construction of a surjective morphism of algebras $\Sigma ^\{\prime\}(W_n) \rightarrow \{\{\mathbf\{Z\}\}\}\{\mathrm\{Irr\}\}(W_n)$. Jöllenbeck’s construction of irreducible characters of the symmetric group by using the coplactic equivalence classes can then be transposed to $W_n$. In an appendix, P. Baumann and C. Hohlweg present in an explicit and combinatorial way the relation between this construction of the irreducible characters of $W_n$ and that of W. Specht.},
affiliation = {Université de Franche-Comté Département de Mathématiques 16 route de Gray 25000 Besançon (France); The Fields Institute 222 College Street Toronto, Ontario M5T 3J1 (Canada); Université Louis Pasteur et CNRS Institut de recherche mathématique avancée 7 rue René Descartes 67084 Strasbourg Cedex (France)},
author = {Bonnafé, Cédric, Hohlweg, Christophe},
journal = {Annales de l’institut Fourier},
keywords = {descent algebra; hyperoctahedral group; coplactic algebra; descent algebras; hyperoctahedral groups; coplactic algebras; group algebras; Weyl groups; Solomon algebras; irreducible characters of symmetric groups; Specht modules},
language = {eng},
number = {1},
pages = {131-181},
publisher = {Association des Annales de l’institut Fourier},
title = {Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups},
url = {http://eudml.org/doc/10137},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Bonnafé, Cédric
AU - Hohlweg, Christophe
TI - Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 1
SP - 131
EP - 181
AB - We construct a subalgebra $\Sigma ^{\prime}(W_n)$ of dimension $2\cdot 3^{n-1}$ of the group algebra of the Weyl group $W_n$ of type $B_n$ containing its usual Solomon algebra and the one of ${\mathfrak{S}}_n$: $\Sigma ^{\prime}(W_n)$ is nothing but the Mantaci-Reutenauer algebra but our point of view leads us to a construction of a surjective morphism of algebras $\Sigma ^{\prime}(W_n) \rightarrow {{\mathbf{Z}}}{\mathrm{Irr}}(W_n)$. Jöllenbeck’s construction of irreducible characters of the symmetric group by using the coplactic equivalence classes can then be transposed to $W_n$. In an appendix, P. Baumann and C. Hohlweg present in an explicit and combinatorial way the relation between this construction of the irreducible characters of $W_n$ and that of W. Specht.
LA - eng
KW - descent algebra; hyperoctahedral group; coplactic algebra; descent algebras; hyperoctahedral groups; coplactic algebras; group algebras; Weyl groups; Solomon algebras; irreducible characters of symmetric groups; Specht modules
UR - http://eudml.org/doc/10137
ER -

References

top
  1. M. Aguiar, S. Mahajan, The Hopf algebra of signed permutations Zbl1304.18022
  2. D. Blessenohl, C. Hohlweg, M. Schocker, A symmetry of the descent algebra of a finite Coxeter group, Adv. in Math. 193 (2005), 416-437 Zbl1085.20018MR2137290
  3. D. Blessenohl, M. Schocker, Noncommutative Character Theory of Symmetric groups I, (2005), Imperial College press, London Zbl1089.20004
  4. C. Bonnafé, L. Iancu, Left cells in type B n with unequal parameters, Represent. Theory 7 (2003), 587-609 Zbl1070.20004MR2017068
  5. N. Bourbaki, Groupes et algèbres de Lie, (1968), Hermann Zbl0483.22001MR240238
  6. M. Geck, On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc. 35 (2003), 608-614 Zbl1045.20004MR1989489
  7. M. Geck, G. Hiss, F. Lübeck, G. Malle, G. Pfeiffer, CHEVIE — A system for computing and procesing generic character tables, Applicable Algebra in Eng. Comm. and Comp. 7 (1996), 175-210 Zbl0847.20006MR1486215
  8. M. Geck, G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, 21 (2000), LMS Zbl0996.20004MR1778802
  9. L. Geissinger, Hopf algebras of symmetric functions and class functions, Comb. Represent. Groupe symétrique, Acte Table Ronde C.N.R.S 579 (1977), 168-181, Strasbourg, 1976 Zbl0366.16002MR506405
  10. J.E. Humphreys, Reflection groups and Coxeter groups, 29 (1990), Cambridge university press Zbl0725.20028MR1066460
  11. A. Jőllenbeck, Nichtkommutative Charaktertheorie der symmetrischen Gruppen, Bayreuth. Math. Schr. 56 (1999), 1-41 Zbl0931.20013MR1717091
  12. A. Lascoux, M. P. Schützenberger, Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics 109 (1981), 129-156, CNR, Rome, Naples, 1978 Zbl0517.20036MR646486
  13. G. Lusztig, Characters of reductive groups over a finite field, 107 (1984), Princeton University Press Zbl0556.20033MR742472
  14. I. G. Macdonald, Symmetric functions and Hall Polynomials, (1995), Oxford science publications, The Clarendon press, Oxford university press Zbl0899.05068MR1354144
  15. C. Malvenuto, C. Reutenauer, Duality between quasi-symmetric functions ans Solomon descent algebra, J. Algebra 177 (1995), 967-982 Zbl0838.05100MR1358493
  16. R. Mantaci, C. Reutenauer, A generalization of Solomon’s algebra for hyperoctahedral groups and other wreath products, Comm. Algebra 23 (1995), 27-56 Zbl0836.20010MR1311773
  17. S. Poirier, C. Reutenauer, Algèbres de Hopf de tableaux, Ann. Sci. Math., Québec 19 (1996), 79-90 Zbl0835.16035MR1334836
  18. L. Solomon, A Mackey formula in the group ring of a Coxeter group, J. Algebra 41 (1976), 255-268 Zbl0355.20007MR444756
  19. W. Specht, Eine Verallgemeinerung der symmetrischen Gruppe, Schriften Math. Seminar Berlin 1 (1932), 1-32 Zbl0004.33804
  20. R. P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982), 132-161 Zbl0496.06001MR654618
  21. J. Y. Thibon, Lectures on Noncommutative Symmetric Functions, Interaction of Combinatorics and Representation Theory 11 (2001), 39-94, Math. Soc. of Japan Zbl0990.05136MR1862149

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.