Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups
Cédric Bonnafé[1]; Christophe Hohlweg[2]
- [1] Université de Franche-Comté Département de Mathématiques 16 route de Gray 25000 Besançon (France)
- [2] The Fields Institute 222 College Street Toronto, Ontario M5T 3J1 (Canada)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 1, page 131-181
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBonnafé, Cédric, and Hohlweg, Christophe. "Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups." Annales de l’institut Fourier 56.1 (2006): 131-181. <http://eudml.org/doc/10137>.
@article{Bonnafé2006,
abstract = {We construct a subalgebra $\Sigma ^\{\prime\}(W_n)$ of dimension $2\cdot 3^\{n-1\}$ of the group algebra of the Weyl group $W_n$ of type $B_n$ containing its usual Solomon algebra and the one of $\{\mathfrak\{S\}\}_n$: $\Sigma ^\{\prime\}(W_n)$ is nothing but the Mantaci-Reutenauer algebra but our point of view leads us to a construction of a surjective morphism of algebras $\Sigma ^\{\prime\}(W_n) \rightarrow \{\{\mathbf\{Z\}\}\}\{\mathrm\{Irr\}\}(W_n)$. Jöllenbeck’s construction of irreducible characters of the symmetric group by using the coplactic equivalence classes can then be transposed to $W_n$. In an appendix, P. Baumann and C. Hohlweg present in an explicit and combinatorial way the relation between this construction of the irreducible characters of $W_n$ and that of W. Specht.},
affiliation = {Université de Franche-Comté Département de Mathématiques 16 route de Gray 25000 Besançon (France); The Fields Institute 222 College Street Toronto, Ontario M5T 3J1 (Canada); Université Louis Pasteur et CNRS Institut de recherche mathématique avancée 7 rue René Descartes 67084 Strasbourg Cedex (France)},
author = {Bonnafé, Cédric, Hohlweg, Christophe},
journal = {Annales de l’institut Fourier},
keywords = {descent algebra; hyperoctahedral group; coplactic algebra; descent algebras; hyperoctahedral groups; coplactic algebras; group algebras; Weyl groups; Solomon algebras; irreducible characters of symmetric groups; Specht modules},
language = {eng},
number = {1},
pages = {131-181},
publisher = {Association des Annales de l’institut Fourier},
title = {Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups},
url = {http://eudml.org/doc/10137},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Bonnafé, Cédric
AU - Hohlweg, Christophe
TI - Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 1
SP - 131
EP - 181
AB - We construct a subalgebra $\Sigma ^{\prime}(W_n)$ of dimension $2\cdot 3^{n-1}$ of the group algebra of the Weyl group $W_n$ of type $B_n$ containing its usual Solomon algebra and the one of ${\mathfrak{S}}_n$: $\Sigma ^{\prime}(W_n)$ is nothing but the Mantaci-Reutenauer algebra but our point of view leads us to a construction of a surjective morphism of algebras $\Sigma ^{\prime}(W_n) \rightarrow {{\mathbf{Z}}}{\mathrm{Irr}}(W_n)$. Jöllenbeck’s construction of irreducible characters of the symmetric group by using the coplactic equivalence classes can then be transposed to $W_n$. In an appendix, P. Baumann and C. Hohlweg present in an explicit and combinatorial way the relation between this construction of the irreducible characters of $W_n$ and that of W. Specht.
LA - eng
KW - descent algebra; hyperoctahedral group; coplactic algebra; descent algebras; hyperoctahedral groups; coplactic algebras; group algebras; Weyl groups; Solomon algebras; irreducible characters of symmetric groups; Specht modules
UR - http://eudml.org/doc/10137
ER -
References
top- M. Aguiar, S. Mahajan, The Hopf algebra of signed permutations Zbl1304.18022
- D. Blessenohl, C. Hohlweg, M. Schocker, A symmetry of the descent algebra of a finite Coxeter group, Adv. in Math. 193 (2005), 416-437 Zbl1085.20018MR2137290
- D. Blessenohl, M. Schocker, Noncommutative Character Theory of Symmetric groups I, (2005), Imperial College press, London Zbl1089.20004
- C. Bonnafé, L. Iancu, Left cells in type with unequal parameters, Represent. Theory 7 (2003), 587-609 Zbl1070.20004MR2017068
- N. Bourbaki, Groupes et algèbres de Lie, (1968), Hermann Zbl0483.22001MR240238
- M. Geck, On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc. 35 (2003), 608-614 Zbl1045.20004MR1989489
- M. Geck, G. Hiss, F. Lübeck, G. Malle, G. Pfeiffer, CHEVIE — A system for computing and procesing generic character tables, Applicable Algebra in Eng. Comm. and Comp. 7 (1996), 175-210 Zbl0847.20006MR1486215
- M. Geck, G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, 21 (2000), LMS Zbl0996.20004MR1778802
- L. Geissinger, Hopf algebras of symmetric functions and class functions, Comb. Represent. Groupe symétrique, Acte Table Ronde C.N.R.S 579 (1977), 168-181, Strasbourg, 1976 Zbl0366.16002MR506405
- J.E. Humphreys, Reflection groups and Coxeter groups, 29 (1990), Cambridge university press Zbl0725.20028MR1066460
- A. Jőllenbeck, Nichtkommutative Charaktertheorie der symmetrischen Gruppen, Bayreuth. Math. Schr. 56 (1999), 1-41 Zbl0931.20013MR1717091
- A. Lascoux, M. P. Schützenberger, Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics 109 (1981), 129-156, CNR, Rome, Naples, 1978 Zbl0517.20036MR646486
- G. Lusztig, Characters of reductive groups over a finite field, 107 (1984), Princeton University Press Zbl0556.20033MR742472
- I. G. Macdonald, Symmetric functions and Hall Polynomials, (1995), Oxford science publications, The Clarendon press, Oxford university press Zbl0899.05068MR1354144
- C. Malvenuto, C. Reutenauer, Duality between quasi-symmetric functions ans Solomon descent algebra, J. Algebra 177 (1995), 967-982 Zbl0838.05100MR1358493
- R. Mantaci, C. Reutenauer, A generalization of Solomon’s algebra for hyperoctahedral groups and other wreath products, Comm. Algebra 23 (1995), 27-56 Zbl0836.20010MR1311773
- S. Poirier, C. Reutenauer, Algèbres de Hopf de tableaux, Ann. Sci. Math., Québec 19 (1996), 79-90 Zbl0835.16035MR1334836
- L. Solomon, A Mackey formula in the group ring of a Coxeter group, J. Algebra 41 (1976), 255-268 Zbl0355.20007MR444756
- W. Specht, Eine Verallgemeinerung der symmetrischen Gruppe, Schriften Math. Seminar Berlin 1 (1932), 1-32 Zbl0004.33804
- R. P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982), 132-161 Zbl0496.06001MR654618
- J. Y. Thibon, Lectures on Noncommutative Symmetric Functions, Interaction of Combinatorics and Representation Theory 11 (2001), 39-94, Math. Soc. of Japan Zbl0990.05136MR1862149
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.