A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on
E. K. Narayanan[1]; S. Thangavelu
- [1] Indian Institute of Science Department of Mathematics Bangalore 560 012 (India)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 2, page 459-473
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNarayanan, E. K., and Thangavelu, S.. "A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on $\mathbb{C}^n$." Annales de l’institut Fourier 56.2 (2006): 459-473. <http://eudml.org/doc/10153>.
@article{Narayanan2006,
abstract = {We prove a spectral Paley-Wiener theorem for the Heisenberg group by means of a support theorem for the twisted spherical means on $\mathbb\{C\}^n.$ If $f(z) e^\{\frac\{1\}\{4\}|z|^2\}$ is a Schwartz class function we show that $f$ is supported in a ball of radius $B$ in $\mathbb\{C\}^n$ if and only if $f \times \mu _r (z) = 0$ for $r > B+|z|$ for all $z \in \mathbb\{C\}^n.$ This is an analogue of Helgason’s support theorem on Euclidean and hyperbolic spaces. When $n = 1$ we show that the two conditions $f \times \mu _r (z) = \mu _r \times f (z) = 0$ for $r > B+|z|$ imply a support theorem for a large class of functions with exponential growth. Surprisingly enough,this latter result does not generalize to higher dimensions.},
affiliation = {Indian Institute of Science Department of Mathematics Bangalore 560 012 (India)},
author = {Narayanan, E. K., Thangavelu, S.},
journal = {Annales de l’institut Fourier},
keywords = {Spectral Paley-Wiener theorem; twisted spherical means; special Hermite operator; Laguerre functions; support theorem; spherical harmonics; spectral decomposition; Paley-Wiener theorem; Heisenberg group; spherical mean},
language = {eng},
number = {2},
pages = {459-473},
publisher = {Association des Annales de l’institut Fourier},
title = {A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on $\mathbb\{C\}^n$},
url = {http://eudml.org/doc/10153},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Narayanan, E. K.
AU - Thangavelu, S.
TI - A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on $\mathbb{C}^n$
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 2
SP - 459
EP - 473
AB - We prove a spectral Paley-Wiener theorem for the Heisenberg group by means of a support theorem for the twisted spherical means on $\mathbb{C}^n.$ If $f(z) e^{\frac{1}{4}|z|^2}$ is a Schwartz class function we show that $f$ is supported in a ball of radius $B$ in $\mathbb{C}^n$ if and only if $f \times \mu _r (z) = 0$ for $r > B+|z|$ for all $z \in \mathbb{C}^n.$ This is an analogue of Helgason’s support theorem on Euclidean and hyperbolic spaces. When $n = 1$ we show that the two conditions $f \times \mu _r (z) = \mu _r \times f (z) = 0$ for $r > B+|z|$ imply a support theorem for a large class of functions with exponential growth. Surprisingly enough,this latter result does not generalize to higher dimensions.
LA - eng
KW - Spectral Paley-Wiener theorem; twisted spherical means; special Hermite operator; Laguerre functions; support theorem; spherical harmonics; spectral decomposition; Paley-Wiener theorem; Heisenberg group; spherical mean
UR - http://eudml.org/doc/10153
ER -
References
top- M. L. Agranovsky, Rama Rawat, Injectivity sets for the spherical means on the Heisenberg group, J. Fourier Anal. Appl. 5 (1999), 363-372 Zbl0931.43007MR1700090
- W. O. Bray, A spectral Paley-Wiener theorem, Monatsh. Math. 116 (1993), 1-11 Zbl0803.43001MR1239140
- W. O. Bray, Generalized spectral projections on symmetric spaces of non compact type: Paley-Wiener theorems, J. Funct. Anal. 135 (1996), 206-232 Zbl0848.43009MR1367630
- C. L. Epstein, B. Kleiner, Spherical means in annular regions, Comm. Pure Appl. Math. 46 (1993), 441-451 Zbl0841.31006MR1202964
- S. Helgason, Groups and Geometric Analysis, (1984), Academic press, New York Zbl0543.58001MR754767
- E. K. Narayanan, S. Thangavelu, Injectivity sets for the spherical means on the Heisenberg group, J. Math. Anal. Appl. 263 (2001), 565-579 Zbl0995.43003MR1866065
- F. W. J. Olver, Asymptotics and special functions, (1974), Academic press, New York Zbl0303.41035MR435697
- W. Rudin, Function theory in the unit ball of , 241 (1980), Springer-Verlag, New York - Berlin Zbl0495.32001MR601594
- G. Sajith, S. Thangavelu, On the injectivity of twisted spherical means on , Israel J. Math. 122 (2), 79-92 Zbl0986.43001MR1826492
- R. S. Strichartz, Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal. 87 (1989), 51-148 Zbl0694.43008MR1025883
- G. Szego, Orthogonal polynomials, 23 (1967), Amer. Math. Soc., Providence, R. I.
- S. Thangavelu, Lectures on Hermite and Laguerre expansions, 42 (1993), Princeton University Press, Princeton, NJ Zbl0791.41030MR1215939
- S. Thangavelu, Harmonic analysis on the Heisenberg group, 159 (1998), Birkhäuser Boston, Boston, MA Zbl0892.43001MR1633042
- S. Thangavelu, An introduction to the uncertainty principle, 217 (2004), Birkhäuser Boston, Boston, MA Zbl1188.43010MR2008480
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.