A limit linear series moduli scheme

Brian Osserman[1]

  • [1] University of California Department of mathematics Berkeley CA 94707-3840 (USA)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 4, page 1165-1205
  • ISSN: 0373-0956

Abstract

top
We develop a new, more functorial construction for the basic theory of limit linear series, which provides a compactification of the Eisenbud-Harris theory. In an appendix, in order to obtain the necessary dimensional lower bounds on our limit linear series scheme we develop a theory of “linked Grassmannians”; these are schemes parametrizing sub-bundles of a sequence of vector bundles, which map into one another under fixed maps of the ambient bundles.

How to cite

top

Osserman, Brian. "A limit linear series moduli scheme." Annales de l’institut Fourier 56.4 (2006): 1165-1205. <http://eudml.org/doc/10169>.

@article{Osserman2006,
abstract = {We develop a new, more functorial construction for the basic theory of limit linear series, which provides a compactification of the Eisenbud-Harris theory. In an appendix, in order to obtain the necessary dimensional lower bounds on our limit linear series scheme we develop a theory of “linked Grassmannians”; these are schemes parametrizing sub-bundles of a sequence of vector bundles, which map into one another under fixed maps of the ambient bundles.},
affiliation = {University of California Department of mathematics Berkeley CA 94707-3840 (USA)},
author = {Osserman, Brian},
journal = {Annales de l’institut Fourier},
keywords = {Limit linear series; compactification; linked Grassmannian; limit linear series; deformations},
language = {eng},
number = {4},
pages = {1165-1205},
publisher = {Association des Annales de l’institut Fourier},
title = {A limit linear series moduli scheme},
url = {http://eudml.org/doc/10169},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Osserman, Brian
TI - A limit linear series moduli scheme
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 1165
EP - 1205
AB - We develop a new, more functorial construction for the basic theory of limit linear series, which provides a compactification of the Eisenbud-Harris theory. In an appendix, in order to obtain the necessary dimensional lower bounds on our limit linear series scheme we develop a theory of “linked Grassmannians”; these are schemes parametrizing sub-bundles of a sequence of vector bundles, which map into one another under fixed maps of the ambient bundles.
LA - eng
KW - Limit linear series; compactification; linked Grassmannian; limit linear series; deformations
UR - http://eudml.org/doc/10169
ER -

References

top
  1. Montserrat Teixidor i Bigas, Brill-Noether theory for stable vector bundles, Duke Mathematical Journal 62 (1991), 385-400 Zbl0739.14006MR1104529
  2. Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud, Néron models, (1991), Springer-Verlag Zbl0705.14001MR1045822
  3. Courbes semi-stables et groupe fondamental en géométrie algébrique, (1998), BostJean-BenoîtJ.-B., Basel 
  4. Winfried Bruns, Udo Vetter, Determinantal rings, 1327 (1988), Springer-Verlag Zbl0673.13006MR953963
  5. Ciro Ciliberto, Geometric aspects of polynomial interpolation in more variables and of Waring’s problem, European Congress of Mathematics, Birkhauser I (2001), 289-316 Zbl1078.14534MR1905326
  6. Pierre Deligne, David Mumford, The irreducibility of the space of curves of given genus, Institut des Hautes Études Scientifiques Publications Mathématiques 36 (1969), 75-109 Zbl0181.48803MR262240
  7. David Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math. 150 (1995), Springer-Verlag Zbl0819.13001MR1322960
  8. David Eisenbud, Joe Harris, Divisors on general curves and cuspidal rational curves, Inventiones Mathematica 74 (1983), 371-418 Zbl0527.14022
  9. David Eisenbud, Joe Harris, Limit linear series: Basic theory, Inventiones Mathematicae 85 (1986), 337-371 Zbl0598.14003MR846932
  10. Eduardo Esteves, Linear systems and ramification points on reducible nodal curves, Matematica Contemporanea 14 (1998), 21-35 Zbl0928.14007MR1662675
  11. Alessandro Gimigliano, Our thin knowledge of fat points, The Curves Seminar at Queen’s Vol. VI (1989), Queen’s University, Kingston, ON Zbl0743.14005MR1036032
  12. A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique: II. Étude globale élémentaire de quelques classes de morphismes, Institut des Hautes Études Scientifiques, Publications mathématiques 8 (1961), 5-222 Zbl0118.36206MR163909
  13. A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, seconde partie, Institut des Hautes Études Scientifiques, Publications mathématiques 17 (1963), 5-91 Zbl0122.16102MR163911
  14. A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, troisième partie, Institut des Hautes Études Scientifiques, Publications mathématiques 28 (1966), 5-255 Zbl0144.19904MR217086
  15. A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, quatrième partie, Institut des Hautes Études Scientifiques, Publications Mathématiques 32 (1967), 5-361 Zbl0153.22301MR238860
  16. Joe Harris, Ian Morrison, Moduli of curves, 187 (1998), Springer-Verlag, New Yok Zbl0913.14005MR1631825
  17. A. J. de Jong, F. Oort, On extending families of curves, J. Algebraic Geometry 6 (1997), 545-562 Zbl0922.14017MR1487226
  18. Brian Osserman, Rational functions with given ramification in characteristic p  Zbl1186.14030MR2218904
  19. Michel Raynaud, Anneaux locaux henséliens, 169 (1970), Springer-Verlag, Berlin Zbl0203.05102MR277519
  20. Gayn B. Winters, On the existence of certain families of curves, American Journal of Mathematics 96 (1974), 215-228 Zbl0334.14004MR357406

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.