A limit linear series moduli scheme
- [1] University of California Department of mathematics Berkeley CA 94707-3840 (USA)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 4, page 1165-1205
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topOsserman, Brian. "A limit linear series moduli scheme." Annales de l’institut Fourier 56.4 (2006): 1165-1205. <http://eudml.org/doc/10169>.
@article{Osserman2006,
abstract = {We develop a new, more functorial construction for the basic theory of limit linear series, which provides a compactification of the Eisenbud-Harris theory. In an appendix, in order to obtain the necessary dimensional lower bounds on our limit linear series scheme we develop a theory of “linked Grassmannians”; these are schemes parametrizing sub-bundles of a sequence of vector bundles, which map into one another under fixed maps of the ambient bundles.},
affiliation = {University of California Department of mathematics Berkeley CA 94707-3840 (USA)},
author = {Osserman, Brian},
journal = {Annales de l’institut Fourier},
keywords = {Limit linear series; compactification; linked Grassmannian; limit linear series; deformations},
language = {eng},
number = {4},
pages = {1165-1205},
publisher = {Association des Annales de l’institut Fourier},
title = {A limit linear series moduli scheme},
url = {http://eudml.org/doc/10169},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Osserman, Brian
TI - A limit linear series moduli scheme
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 1165
EP - 1205
AB - We develop a new, more functorial construction for the basic theory of limit linear series, which provides a compactification of the Eisenbud-Harris theory. In an appendix, in order to obtain the necessary dimensional lower bounds on our limit linear series scheme we develop a theory of “linked Grassmannians”; these are schemes parametrizing sub-bundles of a sequence of vector bundles, which map into one another under fixed maps of the ambient bundles.
LA - eng
KW - Limit linear series; compactification; linked Grassmannian; limit linear series; deformations
UR - http://eudml.org/doc/10169
ER -
References
top- Montserrat Teixidor i Bigas, Brill-Noether theory for stable vector bundles, Duke Mathematical Journal 62 (1991), 385-400 Zbl0739.14006MR1104529
- Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud, Néron models, (1991), Springer-Verlag Zbl0705.14001MR1045822
- Courbes semi-stables et groupe fondamental en géométrie algébrique, (1998), BostJean-BenoîtJ.-B., Basel
- Winfried Bruns, Udo Vetter, Determinantal rings, 1327 (1988), Springer-Verlag Zbl0673.13006MR953963
- Ciro Ciliberto, Geometric aspects of polynomial interpolation in more variables and of Waring’s problem, European Congress of Mathematics, Birkhauser I (2001), 289-316 Zbl1078.14534MR1905326
- Pierre Deligne, David Mumford, The irreducibility of the space of curves of given genus, Institut des Hautes Études Scientifiques Publications Mathématiques 36 (1969), 75-109 Zbl0181.48803MR262240
- David Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math. 150 (1995), Springer-Verlag Zbl0819.13001MR1322960
- David Eisenbud, Joe Harris, Divisors on general curves and cuspidal rational curves, Inventiones Mathematica 74 (1983), 371-418 Zbl0527.14022
- David Eisenbud, Joe Harris, Limit linear series: Basic theory, Inventiones Mathematicae 85 (1986), 337-371 Zbl0598.14003MR846932
- Eduardo Esteves, Linear systems and ramification points on reducible nodal curves, Matematica Contemporanea 14 (1998), 21-35 Zbl0928.14007MR1662675
- Alessandro Gimigliano, Our thin knowledge of fat points, The Curves Seminar at Queen’s Vol. VI (1989), Queen’s University, Kingston, ON Zbl0743.14005MR1036032
- A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique: II. Étude globale élémentaire de quelques classes de morphismes, Institut des Hautes Études Scientifiques, Publications mathématiques 8 (1961), 5-222 Zbl0118.36206MR163909
- A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, seconde partie, Institut des Hautes Études Scientifiques, Publications mathématiques 17 (1963), 5-91 Zbl0122.16102MR163911
- A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, troisième partie, Institut des Hautes Études Scientifiques, Publications mathématiques 28 (1966), 5-255 Zbl0144.19904MR217086
- A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, quatrième partie, Institut des Hautes Études Scientifiques, Publications Mathématiques 32 (1967), 5-361 Zbl0153.22301MR238860
- Joe Harris, Ian Morrison, Moduli of curves, 187 (1998), Springer-Verlag, New Yok Zbl0913.14005MR1631825
- A. J. de Jong, F. Oort, On extending families of curves, J. Algebraic Geometry 6 (1997), 545-562 Zbl0922.14017MR1487226
- Brian Osserman, Rational functions with given ramification in characteristic Zbl1186.14030MR2218904
- Michel Raynaud, Anneaux locaux henséliens, 169 (1970), Springer-Verlag, Berlin Zbl0203.05102MR277519
- Gayn B. Winters, On the existence of certain families of curves, American Journal of Mathematics 96 (1974), 215-228 Zbl0334.14004MR357406
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.